A133924 a(n) = number of exponents occurring only once each in the prime factorization of n!.
0, 0, 1, 0, 2, 1, 3, 2, 2, 2, 4, 3, 3, 3, 2, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 9, 9, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 9, 9, 9
Offset: 0
Keywords
Examples
14! is factored into primes as 2^11 * 3^5 * 5^2 * 7^2 * 11^1 * 13^1. The exponent 1 and 2 each occur more than once. So the exponents occurring only once each are 5 and 11. Therefore a(14) = 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
Programs
-
Maple
A133924 := proc(n) local ifs,a,i ; if n <= 1 then RETURN(0) ; else ifs := ifactors(n!)[2] ; ifs := sort([seq(op(2,i),i=ifs)]) ; a :=0 ; for i from 1 to nops(ifs) do if i = 1 or op(i,ifs) <> op(i-1,ifs) then if i=nops(ifs) or op(i,ifs) <> op(i+1,ifs) then a := a+1 ; fi ; fi ; od: RETURN(a) ; fi ; end: seq(A133924(n),n=0..120) ; # R. J. Mathar, Jan 30 2008
-
Mathematica
ne1[n_]:=Count[Tally[Transpose[FactorInteger[n!]][[2]]],?(Last[#] == 1&)]; Join[{0,0},Array[ne1,110,2]] (* _Harvey P. Dale, Aug 21 2011 *)
Formula
a(n) = A136567(n!). - Amiram Eldar, Aug 08 2024
Extensions
More terms from R. J. Mathar, Jan 30 2008