cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A133956 Complement of A133957.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 239, 251, 263, 269, 281, 293, 307, 349, 401, 409, 419, 421, 431, 433
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2007

Keywords

Comments

Home primes whose homeliness is 1.
Number of terms < 10^n: Pi(10^n)- {0, 2, 37, 274, 2087, 15472, 76940, ...}.

Examples

			Only {2} -> 2, {3} -> 3, etc. Whereas {6 & 23} -> 23 thus 23 has a homeliness of 2 and therefore is not a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 1000}];
    Complement[ Prime@ Range@ 100, {23, 37, 211, 223, 227, 229, 233, 241, 257, 271, 277, 283, 311, 313, 317, 331, 337, 347, 353, 359, 367, 373, 379, 383, 389, 397, 523, 541}]

A133958 Home primes whose homeliness is 2.

Original entry on oeis.org

37, 227, 229, 233, 241, 257, 271, 277, 283, 313, 317, 331, 347, 353, 359, 367, 383, 397, 523, 541, 557, 577, 719, 743, 761, 797, 1117, 1171, 1361, 1367, 1373, 1723, 1741, 1747, 1753, 1759, 1783, 1789, 1973, 1979, 1997, 2113, 2131, 2137, 2179, 2213, 2239
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2007

Keywords

Comments

Number of terms < 10^n: 0, 1, 26, 182, 1428, 10395, 84164, ... .

Examples

			Only {21 & 37} -> 37, etc.
		

Crossrefs

Programs

  • Mathematica
    lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 1000}];
    d = 2 - 2; lsu = {}; Do[ If[ lst[[n]] == lst[[n + d]] && lst[[n-1]] != lst[[n]] && lst[[n]] != lst[[n + d + 1]], AppendTo[lsu, lst[[n]]]], {n, 188004 - d - 1}]; Take[ Union@ lsu, 50]

A133959 Home primes whose homeliness is greater than 2.

Original entry on oeis.org

211, 223, 311, 337, 373, 379, 389, 547, 571, 773, 1123, 1129, 1153, 1319, 1931, 2237, 2311, 2341, 2347, 2371, 2383, 2389, 2557, 2719, 2797, 2953, 2971, 3137, 3167, 3181, 3191, 3251, 3257, 3313, 3329, 3331, 3347, 3359, 3373, 3389, 3449, 3457, 3461, 3463
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2007

Keywords

Comments

Number of terms < 10^n: 0, 0, 10, 91, 658, 5076, 39095, ....

Examples

			{4, 22, 211} -> 211, etc.
		

Crossrefs

Programs

  • Mathematica
    lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 10^7}];
    d = 3 - 2; lsu = {}; Do[ If[ lst[[n]] == lst[[n + d]], AppendTo[ lsu, lst[[n]] ]], {n, 188004 - d - 1}]; Take[ Union@ lsu, 45]

A133960 Home primes whose homeliness is 3.

Original entry on oeis.org

211, 223, 311, 337, 373, 389, 547, 571, 1123, 1153, 1319, 1931, 2237, 2311, 2341, 2371, 2557, 2719, 2797, 2953, 2971, 3167, 3181, 3191, 3257, 3313, 3329, 3347, 3449, 3457, 3461, 3463, 3517, 3541, 3547, 3557, 3571, 3643, 3701, 3709, 3727, 3733, 3739
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2007

Keywords

Comments

Number of terms < 10^n: 0, 0, 8, 65, 437, 3233, 24579, ... .

Examples

			Only {4, 22, 211} -> 211, etc.
		

Crossrefs

Programs

  • Mathematica
    lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 1000}];
    d = 3 - 2; lsu = {}; Do[ If[ lst[[n]] == lst[[n + d]] && lst[[n - 1]] != lst[[n]] && lst[[n]] != lst[[n + d + 1]], AppendTo[lsu, lst[[n]]]], {n, 188004 - d - 1}]; Take[Union@ lsu, 45]

A133961 Home primes whose homeliness is greater than 3.

Original entry on oeis.org

379, 773, 1129, 2347, 2383, 2389, 3137, 3251, 3331, 3359, 3373, 3389, 3593, 3719, 3761, 3767, 3797, 4397, 4759, 7331, 7457, 7523, 7541, 7547, 7823, 7853, 11251, 13367, 13883, 17137, 17317, 19157, 19181, 22367, 22397, 23131, 23167, 23173
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2007

Keywords

Comments

Number of terms < 10^n: 0, 0, 2, 26, 221, 1843, 14516, ....

Examples

			(42,74,237,379) -> 379, etc.
		

Crossrefs

Programs

  • Mathematica
    lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 1000}];
    d = 4 - 2; lsu = {}; Do[ If[ lst[[n]] == lst[[n + d]], AppendTo[ lsu, lst[[n]] ]], {n, 188004 - d - 1}]; Take[ Union@ lsu, 40]

A133962 Home primes whose homeliness is 4.

Original entry on oeis.org

379, 2347, 2383, 2389, 3331, 3359, 3373, 3719, 3767, 4397, 4759, 7331, 7457, 7523, 7547, 7823, 11251, 13883, 17137, 17317, 19157, 19181, 22367, 22397, 23131, 23173, 23197, 23311, 23593, 23677, 23767, 23911, 29101, 31063, 31123, 31181, 31189
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2007

Keywords

Comments

Number of terms < 10^n: 0, 0, 1, 16, 146, 1085, 8522, ... .

Examples

			Only (42,74,237,379) -> 379, etc.
		

Crossrefs

Programs

  • Mathematica
    lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 1000}];
    d = 4 - 2; lsu = {}; Do[ If[ lst[[n]] == lst[[n + d]] && lst[[n - 1]] != lst[[n]] && lst[[n]] != lst[[n + d + 1]], AppendTo[lsu, lst[[n]]]], {n, 188004 - d - 1}]; Take[Union@ lsu, 45]

A133963 Home primes whose homeliness is greater than 4.

Original entry on oeis.org

773, 1129, 3137, 3251, 3389, 3593, 3761, 3797, 7541, 7853, 13367, 23167, 23251, 23557, 23719, 23743, 23761, 23773, 23929, 23971, 31193, 31397, 31973, 33191, 33331, 33769, 33797, 33863, 36389, 37199, 37307, 37463, 37547, 37573, 37607
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2007

Keywords

Comments

Number of terms < 10^n: 0, 0, 1, 10, 75, 758, 5994, ....

Examples

			(10, 25, 55, 511, 773) -> 773, etc.
		

Crossrefs

Programs

  • Mathematica
    lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 1000}];
    d = 4 - 2; lsu = {}; Do[ If[ lst[[n]] == lst[[n + d]], AppendTo[ lsu, lst[[n]] ]], {n, 188004 - d - 1}]; Take[ Union@ lsu, 40]

A133964 Home primes whose homeliness is 5.

Original entry on oeis.org

773, 1129, 3137, 3251, 3593, 3797, 7541, 7853, 23167, 23557, 23719, 23743, 23773, 23971, 31973, 33191, 33331, 33769, 33863, 37307, 37573, 37691, 37997, 39733, 39929, 47797, 53101, 61613, 67349, 67709, 71129, 71171, 71443, 71719, 73181
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2007

Keywords

Comments

Number of terms < 10^n: 0, 0, 1, 8, 44, 417, 3299, ... .

Examples

			Only (10, 25, 55, 511, 773) -> 773, etc.
		

Crossrefs

Programs

  • Mathematica
    lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 1000}];
    d = 5 - 2; lsu = {}; Do[ If[ lst[[n]] == lst[[n + d]] && lst[[n - 1]] != lst[[n]] && lst[[n]] != lst[[n + d + 1]], AppendTo[lsu, lst[[n]]]], {n, 188004 - d - 1}]; Take[Union@ lsu, 45]

A133965 Home primes whose homeliness is greater than 5.

Original entry on oeis.org

3389, 3761, 13367, 23251, 23761, 23929, 31193, 31397, 33797, 36389, 37199, 37463, 37547, 37607, 37643, 37717, 37853, 37907, 37951, 37967, 41863, 41887, 41941, 73331, 74759, 74771, 77269, 77711, 77773, 77797, 83383, 112909, 113779, 114773
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2007

Keywords

Comments

Number of terms < 10^n: 0, 0, 0, 2, 31, 341, 2695, ....

Examples

			(118, 259, 737, 801, 1167, 3389) -> 3389, etc.
		

Crossrefs

Programs

  • Mathematica
    lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 1000}];
    d = 6 - 2; lsu = {}; Do[ If[ lst[[n]] == lst[[n + d]], AppendTo[ lsu, lst[[n]] ]], {n, 188004 - d - 1}]; Take[ Union@ lsu, 35]

A133966 Home primes whose homeliness is 6.

Original entry on oeis.org

3389, 23929, 31193, 37199, 37463, 37547, 37607, 37717, 37853, 37907, 41863, 41887, 41941, 73331, 74759, 74771, 77269, 77797, 83383, 112909, 114773, 131321, 131783, 132971, 134753, 191231, 193463, 223241, 223313, 223331, 223337, 223547, 231277
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2007

Keywords

Comments

Number of terms < 10^n: 0, 0, 0, 1, 19, 197, 1422, ... .

Examples

			Only (118, 259, 737, 801, 1167, 3389) -> 3389, etc.
		

Crossrefs

Programs

  • Mathematica
    lst = {}; f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@n, 2]; h[n_] := NestWhileList[f@# &, n, !PrimeQ@# &, 1, 28]; Do[p = h[n][[ -1]]; If[ PrimeQ@p && p < 10^7 && p != n, Print[{n, p}]; AppendTo[lst, p]], {n, 2, 1000}];
    d = 6 - 2; lsu = {}; Do[ If[ lst[[n]] == lst[[n + d]] && lst[[n - 1]] != lst[[n]] && lst[[n]] != lst[[n + d + 1]], AppendTo[lsu, lst[[n]]]], {n, 188004 - d - 1}]; Take[Union@ lsu, 35]
Showing 1-10 of 24 results. Next