A133994 Irregular array read by rows: n-th row contains (in numerical order) both the positive integers <= n that are divisors of n and those that are coprime to n.
1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 7, 8, 1, 2, 3, 4, 5, 7, 8, 9, 1, 2, 3, 5, 7, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 2, 3, 4, 5, 6, 7, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 2, 3, 5, 7, 9, 11, 13, 14
Offset: 1
Examples
The divisors of 12 are: 1,2,3,4,6,12. The positive integers which are <= 12 and are coprime to 12 are: 1,5,7,11. So row 12 is the union of these two sets: 1,2,3,4,5,6,7,11,12. The irregular triangle T(n, k) starts: n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1: 1 2: 1 2 3: 1 2 3 4: 1 2 3 4 5: 1 2 3 4 5 6: 1 2 3 5 6 7: 1 2 3 4 5 6 7 8: 1 2 3 4 5 7 8 9: 1 2 3 4 5 7 8 9 10: 1 2 3 5 7 9 10 11: 1 2 3 4 5 6 7 8 9 10 11 12: 1 2 3 4 5 6 7 11 12 13: 1 2 3 4 5 6 7 8 9 10 11 12 13 14: 1 2 3 5 7 9 11 13 14 15: 1 2 3 4 5 7 8 11 13 14 15 16: 1 2 3 4 5 7 8 9 11 13 15 16 17: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18: 1 2 3 5 6 7 9 11 13 17 18 19 ... Formatted by _Wolfdieter Lang_, Jan 16 2016
Links
- Robert Israel, Table of n, a(n) for n = 1..10003 (rows 1 to 174, flattened)
Programs
-
Maple
row:= n -> op(select(t -> member(igcd(t,n), [1,t]), [$1..n])): seq(row(n), n=1..30); # Robert Israel, Jan 18 2016
-
Mathematica
row[n_] := Divisors[n] ~Union~ Select[Range[n], CoprimeQ[n, #]&]; Array[ row, 15] // Flatten (* Jean-François Alcover, Jan 18 2016 *)
Comments