This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A134038 #14 Apr 21 2024 13:23:26 %S A134038 4,6,7,11,12,14,15,16,19,22,28,29,30 %N A134038 Mersenne indices of Mersenne prime reversals which are odd composites (associated with A134039). %C A134038 Suggested by Puzzle 417 of Carlos Rivera's The Prime Puzzles & Problems Connection The program below, slightly modified, was used to find the first prime divisor of the Mersenne reversal if an odd composite %H A134038 Carlos Rivera, <a href="https://www.primepuzzles.net/puzzles/puzz_417.htm">Puzzle 417. M(e) reversed primes</a>, The Prime Puzzles & Problems Connection. %F A134038 Generate the Mersenne primes, reverse; if the reversal is an odd composite find the first prime divisor associated with the Mersenne index number %e A134038 The Mersenne index 4 is that of 2^7-1 = 127. The reversal is 721 whose first prime divisor is 7 and 7*103=721. %t A134038 rev[n_] := FromDigits @ Reverse @ IntegerDigits[n]; oddComp[n_] := OddQ[n] && CompositeQ[n]; Select[Range[20], oddComp[rev[2^MersennePrimeExponent[#] - 1]] &] (* _Amiram Eldar_, Feb 16 2020 *) %o A134038 (UBASIC) %o A134038 05 'for a(4): %o A134038 10 'primes using counters %o A134038 20 N=727501488517303786137132964064381141071 %o A134038 30 A=3:S=sqrt(N):C="c" %o A134038 40 B=N\A %o A134038 50 if B*A=N then print B;A;N;"-";:N=N+2:goto 30 %o A134038 60 A=A+2 %o A134038 70 if A<=sqrt(N) then 40 %o A134038 80 if N>2 then stop 81 C=C+1 %o A134038 90 print C;N;"-"; %o A134038 100 N=N+2:goto 30 %Y A134038 Cf. A000043, A134037, A134039. %K A134038 nonn,base,more %O A134038 1,1 %A A134038 _Enoch Haga_, Oct 02 2007 %E A134038 a(3) inserted and a(6)-a(13) added by _Amiram Eldar_, Feb 16 2020