A134039 First prime divisor of odd composite Mersenne prime reversals.
7, 13, 5, 47, 683, 5, 20149, 19, 2399, 15383, 5, 5, 5
Offset: 1
Examples
a(2) = 13 because the 6th Mersenne prime is 2^17-1 = 131071. Reversed this number is 170131, which is equal to 13*13087.
Links
- Carlos Rivera, Puzzle 417. M(e) reversed primes, The Prime Puzzles & Problems Connection.
Programs
-
Mathematica
rev[n_] := FromDigits@Reverse@IntegerDigits[n]; lpf[n_] := Module[{p = 2}, While[! Divisible[n, p], p = NextPrime[p]]; p]; seq={}; Do[r = rev[2^MersennePrimeExponent[n] - 1]; p = lpf[r]; If[p > 2 && p < r, AppendTo[seq, p]], {n, 1, 30}]; seq (* Amiram Eldar, Feb 16 2020 *)
-
UBASIC
to find a(3)=683. 10 'primes using counters 20 N=727501488517303786137132964064381141071 30 A=3:S=sqrt(N):C="c" 40 B=N\A 50 if B*A=N then print B;A;N;"-";:N=N+2:goto 30 60 A=A+2 70 if A<=sqrt(N) then 40 80 if N>2 then stop 81 C=C+1 90 print C;N;"-"; 100 N=N+2:goto 30
Formula
Generate the sequence of Mersenne primes, reverse each and test for primality. If the reversal is an odd composite, find the first prime divisor.
Extensions
a(3) inserted and a(6)-a(13) added by Amiram Eldar, Feb 16 2020
Comments