This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A134045 #18 Nov 30 2015 08:36:20 %S A134045 1,3,7,18,61,258,1177,5358,23821,103338,439297,1838598,7605781, %T A134045 31191618,127100617,515462238,2083142941,8396683098,33779525137, %U A134045 135697396278,544529307301,2183340065778,8749036112857,35043186680718,140313902770861,561679137947658,2247987249823777,8995761328275558 %N A134045 Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 1) x and y are intersecting but for which x is not a subset of y and y is not a subset of x, or 2) x = y. %H A134045 Ross La Haye, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/LaHaye/lahaye5.html">Binary Relations on the Power Set of an n-Element Set</a>, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6. [_Ross La Haye_, Feb 22 2009] %H A134045 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (10,-35,50,-24). %F A134045 a(n) = (1/2)(4^n - 3^(n+1) + 7*2^n - 3) = 3*StirlingS2(n+1,4) + 2*StirlingS2(n+1,2) + 1. %F A134045 G.f.: (1-7*x+12*x^2+3*x^3)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)). [_Colin Barker_, Jul 29 2012] %e A134045 a(2) = 7 because for P(A) = {{},{1},{2},{1,2}} we have for case 0 {{},{1}}, {{},{2}}, {{},{1,2}} and we have for case 2 {{},{}}, {{1},{1}}, {{2},{2}}, {{1,2},{1,2}}. There are 0 {x,y} of P(A) in this example that fall under case 1. %t A134045 Table[3 StirlingS2[n + 1, 4] + 2 StirlingS2[n + 1, 2] + 1, {n, 0, 27}] (* _Michael De Vlieger_, Nov 30 2015 *) %o A134045 (PARI) a(n) = (4^n - 3^(n+1) + 7*2^n - 3)/2; \\ _Michel Marcus_, Nov 30 2015 %Y A134045 Cf. A000225, A032263, A000079. %K A134045 nonn,easy %O A134045 0,2 %A A134045 _Ross La Haye_, Jan 11 2008 %E A134045 More terms from _Michael De Vlieger_, Nov 30 2015