This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A134060 #8 Sep 08 2022 08:45:32 %S A134060 1,2,3,2,6,3,2,9,9,3,2,12,18,12,3,2,15,30,30,15,3,2,18,45,60,45,18,3, %T A134060 2,21,63,105,105,63,21,3,2,24,84,168,210,168,84,24,3,2,27,108,252,378, %U A134060 378,252,108,27,3 %N A134060 Triangle T(n,k) = A124927(n,k) + A134058(n,k) - A007318(n,k), read by rows. %H A134060 G. C. Greubel, <a href="/A134060/b134060.txt">Rows n = 0..50 of the triangle, flattened</a> %F A134060 T(n,k) = A124927(n,k) + A134058(n,k) - A007318(n,k) as infinite lower triangular matrices. %F A134060 Sum_{k=0..n} T(n, k) = A052940(n). %F A134060 T(n, k) = 3*binomial(n,k) - [k=0] - [n=0]. - _G. C. Greubel_, May 03 2021 %e A134060 First few rows of the triangle are: %e A134060 1; %e A134060 2, 3; %e A134060 2, 6, 3; %e A134060 2, 9, 9, 3; %e A134060 2, 12, 18, 12, 3; %e A134060 2, 15, 30, 30, 15, 3; %e A134060 ... %t A134060 Table[3*Binomial[n, k] -Boole[k==0] -Boole[n==0], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, May 03 2021 *) %o A134060 (Magma) [1] cat [k eq 0 select 2 else 3*Binomial(n,k): k in [0..n], n in [1..12]]; // _G. C. Greubel_, May 03 2021 %o A134060 (Sage) %o A134060 def A134060(n,k): return 3*binomial(n,k) -bool(k==0) -bool(n==0) %o A134060 flatten([[A134060(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 03 2021 %Y A134060 Cf. A007318, A052940 (row sums), A127927, A134058. %K A134060 nonn,tabl %O A134060 0,2 %A A134060 _Gary W. Adamson_, Oct 05 2007