This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A134081 #5 Feb 17 2021 20:23:57 %S A134081 1,2,1,3,5,1,4,12,8,1,5,22,26,11,1,6,35,60,45,14,1,7,51,115,125,69,17, %T A134081 1,8,70,196,280,224,98,20,1,9,92,308,546,574,364,132,23,1,10,117,456, %U A134081 966,1260,1050,552,171,26,1 %N A134081 Triangle T(n, k) = binomial(n, k)*((2*k+1)*(n-k) +k+1)/(k+1), read by rows. %H A134081 G. C. Greubel, <a href="/A134081/b134081.txt">Rows n = 0..100 of the triangle, flattened</a> %F A134081 Binomial transform of A112295(unsigned). %F A134081 From _G. C. Greubel_, Feb 17 2021: (Start) %F A134081 T(n, k) = binomial(n, k)*((2*k+1)*(n-k) +k+1)/(k+1). %F A134081 Sum_{k=0..n} T(n, k) = 2^n *n + 1 = A002064(n). (End) %e A134081 First few rows of the triangle are: %e A134081 1; %e A134081 2, 1; %e A134081 3, 5, 1; %e A134081 4, 12, 8, 1; %e A134081 5, 22, 26, 11, 1; %e A134081 6, 35, 60, 45, 14, 1; %e A134081 7, 51, 115, 125, 69, 17, 1; %e A134081 ... %t A134081 T[n_, k_]:= Binomial[n, k]*((2*k+1)*(n-k) +k+1)/(k+1); %t A134081 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Feb 17 2021 *) %o A134081 (Sage) %o A134081 def A134081(n,k): return binomial(n, k)*((2*k+1)*(n-k) +k+1)/(k+1) %o A134081 flatten([[A134081(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 17 2021 %o A134081 (Magma) %o A134081 A134081:= func< n,k | Binomial(n, k)*((2*k+1)*(n-k) +k+1)/(k+1) >; %o A134081 [A134081(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Feb 17 2021 %Y A134081 Cf. A002064, A007318, A112295. %Y A134081 Columns: A000027, A000326, A002413, A051740, A051879. %K A134081 nonn,tabl %O A134081 0,2 %A A134081 _Gary W. Adamson_, Oct 07 2007