cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134094 Binomial convolution of the Stirling numbers of the second kind.

This page as a plain text file.
%I A134094 #12 Oct 17 2019 11:57:33
%S A134094 1,2,6,26,140,887,6405,51564,455712,4370567,45081476,496556194,
%T A134094 5806502663,71734434956,932447207866,12707973761320,181033752071568,
%U A134094 2688530124711819,41525910256013832,665674913113633582
%N A134094 Binomial convolution of the Stirling numbers of the second kind.
%C A134094 Row n of triangle T=A134090 = row n of (I + D*C)^n for n>=0 where C denotes Pascal's triangle, I the identity matrix and D a matrix where D(n+1,n)=1 and zeros elsewhere.
%H A134094 Robert Israel, <a href="/A134094/b134094.txt">Table of n, a(n) for n = 0..517</a>
%F A134094 a(n) = sum( C(n+1,k)*|S2(n,k)|, k=0..n).
%F A134094 Row sums of triangle A134090.
%F A134094 a(n) = [x^n] Sum_{k=0..n} C(n,k)*x^k*(1-k*x) / [Product_{i=0..k+1}(1-i*x)], equivalently, a(n) = Sum_{k=0..n} C(n,k)*[S2(n,k) - k*S2(n-1,k)], where S2(n,k) = A048993(n,k) are Stirling numbers of the 2nd kind.
%F A134094 a(n) = Sum_{k=0..n} C(n+1,k)*S2(n,k). From _Olivier Gérard_, Oct 23 2012
%p A134094 f:= proc(n) local k; add(binomial(n+1,k)*combinat:-stirling2(n,k),k=0..n) end proc:
%p A134094 map(f, [$0..30]); # _Robert Israel_, Oct 16 2019
%t A134094 Table[Sum[Binomial[n + 1, k] StirlingS2[n, k], {k, 0, n}], {n, 0, 20}]
%o A134094 (PARI) {a(n)=sum(k=0,n,binomial(n,k)*polcoeff((1-k*x)/prod(i=0,k+1,1-i*x+x*O(x^(n))),n-k))}
%Y A134094 Cf. A134090; columns: A122455, A134091, A134092, A134093; A048993 (S2).
%Y A134094 Cf. A000110.
%K A134094 nonn
%O A134094 0,2
%A A134094 _Paul D. Hanna_, Oct 08 2007
%E A134094 Definition modified and Mathematica program by _Olivier Gérard_, Oct 23 2012
%E A134094 Simplified Name and moved formulas into the formula section. - _Paul D. Hanna_, Oct 23 2013