cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134125 Integral quotients of partial sums of primes divided by the number of summations.

This page as a plain text file.
%I A134125 #24 Jan 14 2025 13:52:14
%S A134125 5,5,7,11,16,107,338,1011,2249,22582,35989,39167,61019,186504,248776,
%T A134125 367842,977511,1790714,7104697,15450640,42428590,81262621,232483021,
%U A134125 319278215,364554172,419271517,4432367717,14591939203,46911464601,78572862347,277369665793,281386467553
%N A134125 Integral quotients of partial sums of primes divided by the number of summations.
%C A134125 With 1 summation, the partial sum is 2+3 = 5 and 5/1 = 5 is an integer, added to sequence. With 2 summations, the partial sum is 2+3+5 = 10 and 10/2 = 5 is an integer, added to the sequence. After 3 summations, 2+3+5+7 = 17 and 17/3 = 5.6... is not an integer, no contribution to the sequence.
%C A134125 These are all integers of the form A007504(k+1)/k, occurring at k in A134126. Similar to A050248, which looks at A007504(k)/k. - _R. J. Mathar_, Oct 23 2007
%F A134125 a(n) = A007504(k+1)/k where k = A134126(n).
%e A134125 a(1) = 5 because 2+3 = 5 and 5/1 = 5, an integral quotient.
%e A134125 a(3) = A007504(5)/4 = 28/4 = 7.
%e A134125 a(4) = A007504(8)/7 = 77/7 = 11.
%t A134125 With[{nn=50000000},Select[Rest[Accumulate[Prime[Range[nn]]]]/Range[nn-1],IntegerQ]] (* _Harvey P. Dale_, Jul 25 2013 *)
%o A134125 (UBASIC) 10 'primes using counters 20 N=3:C=1:R=5:print 2;3,5 30 A=3:S=sqrt(N) 40 B=N\A 50 if B*A=N then N=N+2:goto 30 60 A=A+2:O=A 70 if A<=sqrt(N) then 40 80 C=C+1 90 R=R+N:T=R/C:U=R-N 100 if T=int(T) then print C;U;N;R;T:stop 110 N=N+2:goto 30
%o A134125 (PARI) lista(pmax) = {my(k = 0, s = 2); forprime(p = 3, pmax, k++; s += p; if(!(s % k), print1(s/k, ", ")));} \\ _Amiram Eldar_, Apr 30 2024
%Y A134125 Cf. A007504, A050248, A134126, A134127, A134128, A134129.
%K A134125 nonn
%O A134125 1,1
%A A134125 _Enoch Haga_, Oct 09 2007
%E A134125 a(21) from _R. J. Mathar_, Oct 23 2007
%E A134125 Edited by _R. J. Mathar_, Apr 17 2009
%E A134125 a(22)-a(29) from _Max Alekseyev_, Jan 28 2012
%E A134125 a(30)-a(32) from _Amiram Eldar_, Apr 30 2024