A134134 Triangle of numbers obtained from the partition array A134133.
1, 2, 1, 6, 2, 1, 24, 10, 2, 1, 120, 36, 10, 2, 1, 720, 204, 44, 10, 2, 1, 5040, 1104, 228, 44, 10, 2, 1, 40320, 7776, 1272, 244, 44, 10, 2, 1, 362880, 57600, 8760, 1320, 244, 44, 10, 2, 1, 3628800, 505440, 63936, 9096, 1352, 244, 44, 10, 2, 1
Offset: 1
Examples
[1];[2,1];[6,2,1];[24,10,2,1];[120,36,10,2,1];... a(4,2)=10 from the sum over the numbers related to the partitions (1,3) and (2^2), namely 1!^1*3!^1 + 2!^2 = 6+4 = 10.
Links
- W. Lang, First 10 rows and more.
Formula
a(n,m)=sum(product(j!^e(n,m,k,j),j=1..n),k=1..p(n,m)) if n>=m>=1, else 0, with p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,k,j) is the exponent of j in the k-th m part partition of n.
Comments