This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A134154 #16 Jun 08 2025 03:34:11 %S A134154 1,7,43,109,205,331,487,673,889,1135,1411,1717,2053,2419,2815,3241, %T A134154 3697,4183,4699,5245,5821,6427,7063,7729,8425,9151,9907,10693,11509, %U A134154 12355,13231,14137,15073,16039,17035,18061,19117,20203,21319,22465,23641 %N A134154 a(n) = 15*n^2 - 9*n + 1. %C A134154 A119617 is union of A134153 and A134154 A000538(n) is divisible by A000330(n) if and only n is congruent to {1, 3} mod 5 (see A047219) A134154(n) is case when n is congruent to 3 mod 5 see cases 2) %H A134154 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A134154 a(n) = 15*n^2 - 9*n + 1. %F A134154 a(n+1) = (3*(5*n + 3)^2 + 3*(5*n + 3) - 1)/5. %F A134154 a(n+1) = (Sum_{k=1..5*n+3} k^4) / (Sum_{k=1..5*n+3} k^2). %F A134154 G.f.: -(1+4*x+25*x^2)/(-1+x)^3. - _R. J. Mathar_, Nov 14 2007 %t A134154 Table[1 - 9 n + 15 n^2, {n, 0, 50}] %t A134154 Table[Sum[k^4, {k, 1, 5m + 3}]/Sum[k^2, {k, 1, 5m + 3}], {m, 0, 30}] %o A134154 (PARI) a(n)=15*n^2-9*n+1 \\ _Charles R Greathouse IV_, Jun 17 2017 %Y A134154 Cf. A000538, A119617, A134153. %K A134154 nonn,easy %O A134154 0,2 %A A134154 _Artur Jasinski_, Oct 10 2007