This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A134158 #28 Aug 16 2017 14:27:26 %S A134158 1,2191,24583,109513,324013,759811,1533331,2785693,4682713,7414903, %T A134158 11197471,16270321,22898053,31369963,42000043,55126981,71114161, %U A134158 90349663,113246263,140241433,171797341,208400851,250563523,298821613,353736073,415892551,485901391 %N A134158 a(n) = 1 + 27n + 252n^2 + 882n^3 + 1029n^4. %C A134158 A000540(n) is divisible by A000330(n) if and only if n is congruent to {1,2,4,5} mod 7 (see A047380). %C A134158 This sequence is the case when n is congruent to 1 mod 7. %C A134158 A134159 is the case when n is congruent to 2 mod 7. %C A134158 A134160 is the case when n is congruent to 4 mod 7. %C A134158 A134161 is the case when n is congruent to 5 mod 7. %C A134158 A133180 is the union of this sequence, A134159, A134160, and A134161. %H A134158 Colin Barker, <a href="/A134158/b134158.txt">Table of n, a(n) for n = 0..1000</a> %H A134158 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A134158 a(n) = (3(7n + 1)^4 + 6(7n + 1)^3 - 3 (7n + 1) + 1)/7. %F A134158 a(n) = (Sum_{k=1..7n+1} k^6) / (Sum_{k=1..7n+1} k^2). %F A134158 G.f.: -(1 + 2186*x + 13638*x^2 + 8498*x^3 + 373*x^4)/(-1+x)^5. - _R. J. Mathar_, Nov 14 2007 %F A134158 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4. - _Colin Barker_, Aug 12 2017 %t A134158 Table[(3(7n + 1)^4 + 6(7n + 1)^3 - 3 (7n + 1) + 1)/7, {n, 0, 100}] (* or *) Table[Sum[k^6, {k, 1, 7n + 1}]/Sum[k^2, {k, 1, 7n + 1}], {n, 0, 100}] (* _Artur Jasinski_ *) %o A134158 (PARI) Vec((1 + 2186*x + 13638*x^2 + 8498*x^3 + 373*x^4) / (1 - x)^5 + O(x^30)) \\ _Colin Barker_, Aug 12 2017 %Y A134158 Cf. A000330, A000540, A119617, A134153, A134154, A133180, A134155, A134159, A134160, A134161. %K A134158 nonn,easy %O A134158 0,2 %A A134158 _Artur Jasinski_, Oct 10 2007