This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A134169 #35 May 30 2016 04:39:30 %S A134169 1,2,7,29,121,497,2017,8129,32641,130817,523777,2096129,8386561, %T A134169 33550337,134209537,536854529,2147450881,8589869057,34359607297, %U A134169 137438691329,549755289601,2199022206977,8796090925057,35184367894529 %N A134169 a(n) = 2^(n-1)*(2^n - 1) + 1. %C A134169 Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either (Case 0) x and y are disjoint, x is not a subset of y, and y is not a subset of x; or (Case 1) x and y are intersecting, but x is not a subset of y, and y is not a subset of x; or (Case 2) x and y are intersecting, and either x is a proper subset of y, or y is a proper subset of x; or (Case 3) x = y. %H A134169 G. C. Greubel, <a href="/A134169/b134169.txt">Table of n, a(n) for n = 0..1000</a> %H A134169 Ross La Haye, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/LaHaye/lahaye5.html">Binary Relations on the Power Set of an n-Element Set</a>, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6. %H A134169 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-14,8). %F A134169 a(n) = 2^(n-1)*(2^n - 1) + 1. %F A134169 a(n) = StirlingS2(2^n,2^n - 1) + 1 = C(2^n,2) + 1 = A006516(n) + 1. %F A134169 From _R. J. Mathar_, Feb 15 2010: (Start) %F A134169 a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3). %F A134169 G.f.: (1 - 5*x + 7*x^2)/((1-x) * (2*x-1) * (4*x-1)). (End) %e A134169 a(2) = 7 because for P(A) = {{},{1},{2},{1,2}} we have for Case 0 {{1},{2}}; we have for Case 2 {{1},{1,2}}, {{2},{1,2}}; and we have for Case 3 {{},{}}, {{1},{1}}, {{2},{2}}, {{1,2},{1,2}}. There are 0 {x,y} of P(A) in this example that fall under Case 1. %t A134169 Table[EulerE[2,2^n],{n,0,60}]/2+1 (* _Vladimir Joseph Stephan Orlovsky_, Nov 03 2009 *) %t A134169 LinearRecurrence[{7,-14,8},{1,2,7},30] (* _Harvey P. Dale_, Mar 12 2013 *) %Y A134169 Cf. A000392, A032263, A028243, A000079, A006516. %K A134169 nonn,easy %O A134169 0,2 %A A134169 _Ross La Haye_, Jan 12 2008 %E A134169 More terms from _Vladimir Joseph Stephan Orlovsky_, Nov 03 2009 %E A134169 Edited by _N. J. A. Sloane_, Jan 25 2015 at the suggestion of _Michel Marcus_