This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A134231 #5 Feb 17 2021 20:24:23 %S A134231 1,3,1,3,5,1,4,3,7,1,5,4,3,9,1,6,5,4,3,11,1,7,6,5,4,3,13,1,8,7,6,5,4, %T A134231 3,15,1,9,8,7,6,5,4,3,17,1,10,9,8,7,6,5,4,3,19,1,11,10,9,8,7,6,5,4,3, %U A134231 21,1,12,11,10,9,8,7,6,5,4,3,23,1,13,12,11,10,9,8,7,6,5,4,3,25,1 %N A134231 Triangle T(n, k) = n -k +1 with T(n, n-1) = 2*n-1 and T(n, n) = 1, read by rows. %H A134231 G. C. Greubel, <a href="/A134231/b134231.txt">Rows n = 1..50 of the triangle, flattened</a> %F A134231 T(n, k) = A004736(n, k) + A134081(n, k) - I, an infinite lower triangular matrix, where I = Identity matrix. %F A134231 From _G. C. Greubel_, Feb 17 2021: (Start) %F A134231 T(n, k) = n - k + 1 with T(n, n-1) = 2*n - 1 and T(n, n) = 1. %F A134231 Sum_{k=1..n} T(n, k) = (n-1)*(n+6)/2 + [n=1] = A134227(n). (End) %e A134231 First few rows of the triangle are: %e A134231 1; %e A134231 3, 1; %e A134231 3, 5, 1; %e A134231 4, 3, 7, 1; %e A134231 5, 4, 3, 9, 1; %e A134231 6, 5, 4, 3, 11, 1; %e A134231 7, 6, 5, 4, 3, 13, 1; %e A134231 ... %t A134231 T[n_, k_]:= If[k==n, 1, If[k==n-1, 2*n-1, n-k+1]]; %t A134231 Table[T[n, k], {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Feb 17 2021 *) %o A134231 (Sage) %o A134231 def A134231(n,k): return 1 if k==n else 2*n-1 if k==n-1 else n-k+1 %o A134231 flatten([[A134231(n,k) for k in (1..n)] for n in (1..15)]) # _G. C. Greubel_, Feb 17 2021 %o A134231 (Magma) %o A134231 A134231:= func< n,k | k eq n select 1 else k eq n-1 select 2*n-1 else n-k+1 >; %o A134231 [A134231(n,k): k in [1..n], n in [1..15]]; // _G. C. Greubel_, Feb 17 2021 %Y A134231 Cf. A004736, A134081, A134227. %K A134231 nonn,tabl %O A134231 1,2 %A A134231 _Gary W. Adamson_, Oct 14 2007 %E A134231 More terms and title changed by _G. C. Greubel_, Feb 17 2021