This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A134266 #29 Feb 16 2024 05:47:21 %S A134266 2,3,5,7,13,19,23,31,47,53,61,73,83,89,113,293,317,523,887,1129,1327, %T A134266 8467,9551,12853,14107,15683,19609,25471,31397,155921,338033,360653, %U A134266 370261,492113,1349533,1357201,1561919,2010733,4652353,11113933,15203977,17051707,20831323,47326693,122164747,189695659,191912783 %N A134266 Primes associated with the prime gaps listed in A085237. %C A134266 The smallest prime p(n) such that p(n+1)-p(n) is nondecreasing. The smallest prime p(n) such that (p(n+1)/p(n))^p(n) is increasing. [_Thomas Ordowski_, May 26 2012] %C A134266 a(n) is the last prime in the n-th sublist of prime numbers defined in A348178. - _Ya-Ping Lu_, Oct 19 2021 %H A134266 Michel Planat and Patrick Solé, <a href="http://arxiv.org/abs/1410.1083">Improving Riemann prime counting</a>, arXiv preprint arXiv:1410.1083 [math.NT], 2014. %F A134266 a(n) = A000040(A085500(n)). - _M. F. Hasler_, Apr 26 2014 %o A134266 (Python) %o A134266 from sympy import nextprime; p, r = 2, 0 %o A134266 while p < 2*10**8: %o A134266 q = nextprime(p); g = q - p %o A134266 if g >= r: print(p, end = ', '); r = g %o A134266 p = q # _Ya-Ping Lu_, Jan 23 2024 %Y A134266 See also A205827(n) = A000040(A214935(n)), A182514(n) = A000040(A241540(n)). %Y A134266 Cf. A348178. %K A134266 nonn %O A134266 1,1 %A A134266 _David W. Wilson_, Dec 31 2007