A134275 Triangle of numbers obtained from the partition array A134274.
1, 5, 1, 45, 5, 1, 585, 70, 5, 1, 9945, 810, 70, 5, 1, 208845, 14895, 935, 70, 5, 1, 5221125, 284895, 16020, 935, 70, 5, 1, 151412625, 7055100, 309645, 16645, 935, 70, 5, 1, 4996616625, 192734100, 7526475, 315270, 16645, 935, 70, 5, 1, 184874815125
Offset: 1
Examples
Triangle begins: [1]; [5,1]; [45,5,1]; [585,70,5,1]; [9945,810,70,5,1]; ...
Links
- Wolfdieter Lang, First 10 rows and more.
Formula
a(n,m) = sum(product(S2(5;j,1)^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. S2(5;j,1)= A007696(j) = A049029(j,1) = (4*j-3)(!^4), (quadruple- or 4-factorials).
Comments