cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134286 Characteristic sequence for sequence A026905.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Wolfdieter Lang, Nov 13 2007

Keywords

Comments

This partition array is the member k=1 in the family M_0(k), with M_0(2)=M_0= A048996, M_0(3)= A134283, etc.
When read as partition array (tabf with sequence of row lengths given by the partition numbers A000041) in Abramowitz-Stegun order (see A117506 for the reference) a(n,k) is the characteristic partition array for the partition (1^n) of n.

Programs

  • Mathematica
    terms = 105; nmax = 10;
    pp = PartitionsP[Range[nmax]] // Accumulate;
    a[n_] := If[n > pp[[-1]], Print["nmax = ", nmax, " too small"], Boole[ MemberQ[ pp, n]]];
    Array[a, terms] (* Jean-François Alcover, Jun 19 2019 *)

Formula

a(n)=1 if n from A026905, else 0.