This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A134338 #18 Feb 09 2014 22:44:34 %S A134338 1,1,3,4,5,6,7,32,27,50,11,72,13,98,225,512,17,972,19,200,441,242,23, %T A134338 13824,125,338,729,10976,29,4500,31,16384,1089,578,1225,419904,37,722, %U A134338 1521,64000,41,12348,43,42592,91125,1058,47,10616832,343,62500,2601 %N A134338 a(n) = product of the "isolated divisors" of n. A divisor k of n is isolated if neither k-1 nor k+1 divides n. %C A134338 2 has no isolated divisors. So a(2) is 1. %F A134338 a(2n-1) = A007955(2n-1); a(2n) = A007955(2n) / A134339(n). - _Ray Chandler_ %e A134338 The divisors of 20 are 1, 2, 4, 5, 10, 20. Of these, 10 and 20 are the isolated divisors. So a(20) = 10*20 = 200. %p A134338 with(numtheory): a:=proc(n) local div,ISO,i: div:=divisors(n): ISO:={}: for i to tau(n) do if member(div[i]-1,div)=false and member(div[i]+1,div)=false then ISO:=`union`(ISO,{div[i]}) end if end do: product(ISO[j],j=1..nops(ISO)) end proc: seq(a(n),n=1..50); # _Emeric Deutsch_, Oct 24 2007 %t A134338 isoDivs[n_] := Module[{dn = Divisors[n]}, Complement[dn, Union[Flatten[Select[Partition[dn, 2, 1], #[[2]] - #[[1]] == 1 &]]]]]; Table[Times@@isoDivs[i], {i, 60}] (* _Harvey P. Dale_, Jan 09 2011 *) %Y A134338 Cf. A133779, A132881, A134339. %K A134338 nonn %O A134338 1,3 %A A134338 _Leroy Quet_, Oct 21 2007 %E A134338 More terms from _Emeric Deutsch_, Oct 24 2007 %E A134338 Extended by _Ray Chandler_, Jun 24 2008