A134346 Triangle read by rows: T(n,k) = (2^(n+1)-1)*binomial(n,k).
1, 3, 3, 7, 14, 7, 15, 45, 45, 15, 31, 124, 186, 124, 31, 63, 315, 630, 630, 315, 63, 127, 762, 1905, 2540, 1905, 762, 127, 255, 1785, 5355, 8925, 8925, 5355, 1785, 255, 511, 4088, 14308, 28616, 35770, 28616, 14308, 4088, 511
Offset: 0
Examples
First few rows of the triangle: n\k 0 1 2 3 4 5 6 7 8 9 ... 0: 1 1: 3 3 2: 7 14 7 3: 15 45 45 15 4: 31 124 186 124 31 5: 63 315 630 630 315 63 6: 127 762 1905 2540 1905 762 127 7: 255 1785 5355 8925 8925 5355 1785 255 8: 511 4088 14308 28616 35770 28616 14308 4088 511 9: 1023 9207 36828 85932 128898 128898 85932 36828 9207 1023 ... reformatted by _Wolfdieter Lang_, Aug 21 2022 ---------------------------------------------------------------------------------- T(3, 1) = 12 + 10 + 9 + 6 + 5 + 3 = 45. (From A356028 row n = 4, m = 2.) Recurrences: T(4, 1) = 45 + 15 + 4*16 = 2*(45 + 15) +4 = 124. - _Wolfdieter Lang_, Jul 27 2022
Links
- Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of the triangle, flattened).
Crossrefs
Programs
-
Maple
A134346 := proc(n,k) (2^(n+1)-1)*binomial(n,k) ; end proc: seq(seq( A134346(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Aug 15 2022 ser := series((1/2 - x)^(k - n - 1) - (1 - x)^(k - n - 1), x, 10): seq(seq(coeff(ser, x, k), k = 0..n), n = 0..9); # Peter Luschny, Aug 22 2022
-
Mathematica
A134346[n_,k_]:=(2^(n+1)-1)Binomial[n,k]; Table[A134346[n,k],{n,0,10},{k,0,n}] (* Paolo Xausa, Dec 20 2023 *)
-
PARI
T(n,k) = my(b=binomial(n,k)); b<<(n+1) - b; \\ Kevin Ryde, Aug 15 2022
Formula
From Wolfdieter Lang, Aug 21 2022: (Start)
T(n, k) = 0 for n < k, T(n, 0) = 2^(n+1) - 1, and
T(n, k) = T(n-1, k) + T(n-1, k-1) + binomial(n, k)*2^n, or
T(n, k) = 2*(T(n-1, k) + T(n-1, k-1)) + binomial(n-1, k-1).
(Proof for T(n-1, m-1) = t(n, m), offset 1, by separating in the list of the binary code of the numbers 1, 2, ..., 2^n-1 of length n and weight m the sublists with first entry 1 and 0. The total number of elements of the list for n and m is binomial(n, m).) (End)
T(n, k) = [x^k] ((1/2 - x)^(k - n - 1) - (1 - x)^(k - n - 1)). - Peter Luschny, Aug 22 2022
Extensions
Name simplified by R. J. Mathar, Aug 15 2022
Comments