cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134346 Triangle read by rows: T(n,k) = (2^(n+1)-1)*binomial(n,k).

Original entry on oeis.org

1, 3, 3, 7, 14, 7, 15, 45, 45, 15, 31, 124, 186, 124, 31, 63, 315, 630, 630, 315, 63, 127, 762, 1905, 2540, 1905, 762, 127, 255, 1785, 5355, 8925, 8925, 5355, 1785, 255, 511, 4088, 14308, 28616, 35770, 28616, 14308, 4088, 511
Offset: 0

Views

Author

Gary W. Adamson, Oct 21 2007

Keywords

Comments

Inverse binomial transform: A134347.
From Wolfdieter Lang, Jul 27 2022: (Start)
Also the triangle t with offset 1 and elements t(n, m) = T(n-1, m-1) read by rows, giving in row n >= 1 the sums of the entries of A356028 of like m.
Also triangle t with offset 1 read by rows, giving in row n >= 1 the sum of the numbers from 1, 2, ..., 2^n - 1 with binary weight m, for m = 1, 2, ..., n. [Observation by Kevin Ryde.] (End)
T(n,k) is the sum of the entries in the (k+2)-th column of the Christmas tree pattern (A367562) of order n+1. - Paolo Xausa, Dec 20 2023

Examples

			First few rows of the triangle:
n\k    0    1     2     3      4      5     6     7    8   9 ...
0:     1
1:     3    3
2:     7   14     7
3:    15   45    45    15
4:    31  124   186   124     31
5:    63  315   630   630    315     63
6:   127  762  1905  2540   1905    762   127
7:   255 1785  5355  8925   8925   5355  1785   255
8:   511 4088 14308 28616  35770  28616 14308  4088  511
9:  1023 9207 36828 85932 128898 128898 85932 36828 9207 1023
... reformatted by _Wolfdieter Lang_, Aug 21 2022
----------------------------------------------------------------------------------
T(3, 1) = 12 + 10 + 9 + 6 + 5 + 3 = 45. (From A356028 row n = 4, m = 2.)
Recurrences: T(4, 1) = 45 + 15 + 4*16 = 2*(45 + 15) +4 = 124. - _Wolfdieter Lang_, Jul 27 2022
		

Crossrefs

Cf. A000225, A006516(n+1) (row sums), A124929, A134347, A356028, A356117.

Programs

  • Maple
    A134346 := proc(n,k)
        (2^(n+1)-1)*binomial(n,k) ;
    end proc:
    seq(seq( A134346(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Aug 15 2022
    ser := series((1/2 - x)^(k - n - 1) - (1 - x)^(k - n - 1), x, 10):
    seq(seq(coeff(ser, x, k), k = 0..n), n = 0..9); # Peter Luschny, Aug 22 2022
  • Mathematica
    A134346[n_,k_]:=(2^(n+1)-1)Binomial[n,k];
    Table[A134346[n,k],{n,0,10},{k,0,n}] (* Paolo Xausa, Dec 20 2023 *)
  • PARI
    T(n,k) = my(b=binomial(n,k)); b<<(n+1) - b; \\ Kevin Ryde, Aug 15 2022

Formula

T(n, m) = A000225(n+1)*A007318(n, m).
From Wolfdieter Lang, Aug 21 2022: (Start)
T(n, k) = 0 for n < k, T(n, 0) = 2^(n+1) - 1, and
T(n, k) = T(n-1, k) + T(n-1, k-1) + binomial(n, k)*2^n, or
T(n, k) = 2*(T(n-1, k) + T(n-1, k-1)) + binomial(n-1, k-1).
(Proof for T(n-1, m-1) = t(n, m), offset 1, by separating in the list of the binary code of the numbers 1, 2, ..., 2^n-1 of length n and weight m the sublists with first entry 1 and 0. The total number of elements of the list for n and m is binomial(n, m).) (End)
T(n, k) = [x^k] ((1/2 - x)^(k - n - 1) - (1 - x)^(k - n - 1)). - Peter Luschny, Aug 22 2022

Extensions

Name simplified by R. J. Mathar, Aug 15 2022