This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A134353 #22 Dec 27 2018 20:51:57 %S A134353 1,2,8,16,48,96,256,512,1280,2560,6144,12288,28672,57344,131072, %T A134353 262144,589824,1179648,2621440,5242880,11534336,23068672,50331648, %U A134353 100663296,218103808,436207616,939524096,1879048192,4026531840,8053063680,17179869184 %N A134353 Row sums of triangle A134352. %H A134353 <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (2,4,-8). %F A134353 a(n) = 2^n * A004526(n+2). %F A134353 From _Arkadiusz Wesolowski_, Dec 28 2011: (Start) %F A134353 a(n) = 2^(n-2)*(2*n + 3 + (-1)^n). %F A134353 G.f.: 1/((1 - 2*x)*(1 - 4*x^2)). (End) %F A134353 G.f.: G(0)/(1-x), where G(k)= 1 + 2*x*(k+1)/(k+2 - 2*x*(k+2)*(k+3)/(2*x*(k+3) + (k+1)/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jul 31 2013 %e A134353 a(3) = 16 sum of row 3 terms of triangle A134352: (0 + 8 + 0 + 8). %e A134353 a(4) = 48 = 2^4 * A004526(6) = 16 * 3. %t A134353 Table[2^n*((2*n + 3)/4 + (-1)^n/4), {n, 0, 30}] (* _Arkadiusz Wesolowski_, Dec 28 2011 *) %t A134353 LinearRecurrence[{2,4,-8},{1,2,8},40] (* _Harvey P. Dale_, Nov 09 2017 *) %Y A134353 Cf. A134352, A004526. %K A134353 nonn,easy %O A134353 0,2 %A A134353 _Gary W. Adamson_, Oct 21 2007