This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A134357 #13 Feb 05 2025 15:51:55 %S A134357 2,1,1,3,13,34,133,115,435,59334,2294,19721,195693,4060189,12746447, %T A134357 331303,25369351,4959422,11092118,28745223797,16310849170,14814154260, %U A134357 348379527681,263145320733,1493627665569,100023828627,531705615333,156537259557,1047443521637 %N A134357 Denominator of binomial(6*n-2,2*n)/(2*binomial(4*n-1,2*n)). %C A134357 It is conjectured that binomial(6*n-2,2*n)/(2*binomial(4*n-1,2*n)) = A005156(n+1)/A005156(n). %D A134357 D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; see conjecture (6.18). %H A134357 Harvey P. Dale, <a href="/A134357/b134357.txt">Table of n, a(n) for n = 0..1000</a> %e A134357 1/2, 1, 3, 26/3, 323/13, 2415/34, 26970/133, 66526/115, 717541/435, 278992987/59334, 30741431/2294, ... %t A134357 Table[Binomial[6n-2,2n]/(2Binomial[4n-1,2n]),{n,0,30}]//Denominator (* _Harvey P. Dale_, Feb 05 2025 *) %Y A134357 Cf. A109074, A005156. %K A134357 nonn,frac %O A134357 0,1 %A A134357 _N. J. A. Sloane_, May 04 2008 %E A134357 Changed numerator to denominator in title, Arvind Ayyer, Jan 29 2012