cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134424 Area under all paths in the first quadrant from (0,0) to (n,0) using steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0).

This page as a plain text file.
%I A134424 #12 Sep 25 2024 01:53:30
%S A134424 0,0,1,4,21,80,316,1152,4186,14812,52020,180616,623338,2138040,
%T A134424 7302035,24842736,84262609,285052676,962184359,3241616628,10903119167,
%U A134424 36619715860,122837641530,411588875136,1377735161776,4607695277512
%N A134424 Area under all paths in the first quadrant from (0,0) to (n,0) using steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0).
%F A134424 a(n) = Sum_{k>=0} k * A134423(n,k).
%F A134424 G.f.: z^2*(1+z^2)*g^2/((1+z-z^2)*(1-3*z-z^2)), where g=1+z*g+z^2*g+z^2*g^2 (g is the g.f. of A128720).
%F A134424 Conjecture D-finite with recurrence -(n+2)*(5*n-7)*a(n) -(n+1)*(5*n-127)*a(n-1) +(135*n^2-655*n-42)*a(n-2) +2*(5*n^2-275*n-108)*a(n-3) +(-725*n^2+4941*n-5734)*a(n-4) +(-235*n^2+1880*n-1173)*a(n-5) +(725*n^2-6659*n+12606)*a(n-6) +2*(5*n^2+195*n-1988)*a(n-7) +(-135*n^2+1505*n-3358)*a(n-8) -(5*n+87)*(n-9)*a(n-9) +(5*n-33)*(n-10)*a(n-10)=0. - _R. J. Mathar_, Jul 24 2022
%e A134424 a(3)=4 because the areas under the paths hhh, hH, Hh, hUD, UhD and UDh are 0,0,0,1,2 and 1, respectively.
%p A134424 g:=((1-z-z^2-sqrt((1+z-z^2)*(1-3*z-z^2)))*1/2)/z^2: G:=z^2*(1+z^2)*g^2/((1+z-z^2)*(1-3*z-z^2)): Gser:=series(G,z=0,32): seq(coeff(Gser,z,n),n=0..25);
%Y A134424 Cf. A128720, A134423.
%K A134424 nonn
%O A134424 0,4
%A A134424 _Emeric Deutsch_, Oct 25 2007