cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134469 Decimal expansion of -zeta(1/2)/sqrt(2*Pi).

This page as a plain text file.
%I A134469 #21 Dec 14 2024 09:18:07
%S A134469 5,8,2,5,9,7,1,5,7,9,3,9,0,1,0,6,7,0,2,0,5,1,7,7,1,6,4,1,8,7,6,3,1,1,
%T A134469 5,4,7,2,9,0,9,3,8,7,0,1,9,8,6,5,4,7,0,4,8,2,3,6,9,3,9,4,2,0,6,6,5,3,
%U A134469 0,6,8,7,5,9,6,4,9,8,9,4,6,0,4,1,7,9,1,9,0,6,8,3,4,7,7,6,0,3,0,5,6,8,5,6,2,7
%N A134469 Decimal expansion of -zeta(1/2)/sqrt(2*Pi).
%C A134469 This number is the limiting expected overshoot over a boundary for the sum of independent and identically distributed normal variables with unit variance, as their positive mean approaches zero. It has applications in sequential analysis.
%D A134469 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.9, p. 326.
%H A134469 G. C. Greubel, <a href="/A134469/b134469.txt">Table of n, a(n) for n = 0..10000</a>
%H A134469 Joseph T. Chang and Yuval Peres, <a href="http://www.jstor.org/stable/2959611">Ladder heights, Gaussian random walks and the Riemann zeta function</a>, Annals of Probability, 25(2) (1997) 787-802.
%H A134469 Alain Comtet and Satya N. Majumdar, <a href="http://arxiv.org/abs/cond-mat/0506195">Precise Asymptotics for a Random Walker’s Maximum</a>, J. Stat. Mech. Theor. Exp. 06 (2005) P06013, arXiv:cond-mat/0506195 [cond-mat.stat-mech], 2005.
%H A134469 Hans J. H. Tuenter, <a href="http://dx.doi.org/10.1080/07474940701620998">Overshoot in the Case of Normal Variables: Chernoff's Integral, Latta's Observation and Wijsman's Sum</a>, Sequential Analysis, 26(4) (2007) 481-488.
%H A134469 Robert A. Wijsman, <a href="http://dx.doi.org/10.1081/SQA-120035933">Overshoot in the Case of Normal Variables</a>, Sequential Analysis, 23(2):275-284, 2004.
%F A134469 -zeta(1/2)/sqrt(2*Pi)= A059750/A019727.
%e A134469 0.58259715793901067020517716418763115472909387019865...
%p A134469 Digits:=100; evalf(-Zeta(1/2)/sqrt(2*Pi));
%t A134469 RealDigits[-Zeta[1/2]/Sqrt[2*Pi], 10, 100][[1]] (* _G. C. Greubel_, Mar 27 2018 *)
%o A134469 (PARI) -zeta(1/2)/sqrt(2*Pi) \\ _Charles R Greathouse IV_, Mar 10 2016
%Y A134469 Cf. A134470 (continued fraction), A134471 (Numerators of continued fraction convergents), A134472 (Denominators of continued fraction convergents).
%K A134469 cons,nonn
%O A134469 0,1
%A A134469 _Hans J. H. Tuenter_, Oct 27 2007
%E A134469 More decimals from _Vaclav Kotesovec_, Mar 21 2016