This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A134470 #16 Mar 29 2018 02:44:52 %S A134470 0,1,1,2,1,1,8,1,5,1,1,1,12,5,1,1,5,1,12,1,1,1,1,2,1,1,1,1,2,3,2,2,2, %T A134470 1,11,1,6,1,3,2,1,1,1,1,1,2,6,7,1,4,2,1,1,1,13,1,1,1,2,4,2,11,1,2,5,1, %U A134470 8,1,78,10,1,64,1,29,1,3,1,1,1,2,1,12,1,2,1,4,1,2,1,2,32,1,92,1,14,1,10,12,2,3,16,2,1,1,1,1,8,3,15,1,2,2,1,4,4,2,8,1,1557,3,1,69,1,5,3,11,1,1 %N A134470 Continued fraction expansion of -zeta(1/2)/sqrt(2*Pi). %H A134470 G. C. Greubel, <a href="/A134470/b134470.txt">Table of n, a(n) for n = 0..10000</a> %H A134470 Hans J. H. Tuenter, <a href="http://dx.doi.org/10.1080/07474940701620998">Overshoot in the Case of Normal Variables: Chernoff's Integral, Latta's Observation and Wijsman's Sum</a>, Sequential Analysis, 26(4) (2007) 481-488. %p A134470 Digits:=100; cfrac(-Zeta(1/2)/sqrt(2*Pi),30,'quotients'); %t A134470 ContinuedFraction[ -Zeta[1/2]/Sqrt[2 \[Pi]], 100] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *) %o A134470 (PARI) %o A134470 default(realprecision,1000); %o A134470 c=-zeta(1/2)/sqrt(2*Pi); /* == 0.582597157... (A134469) */ %o A134470 contfrac(c) /* gives 967 terms */ %Y A134470 Cf. A134469 (Decimal expansion), A134471 (Numerators of continued fraction convergents), A134472 (Denominators of continued fraction convergents). %K A134470 cofr,nonn,easy %O A134470 0,4 %A A134470 _Hans J. H. Tuenter_, Oct 27 2007 %E A134470 More terms from J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010