cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134471 Numerators of the convergents of the continued fraction expansion of -zeta(1/2)/sqrt(2*Pi).

This page as a plain text file.
%I A134471 #13 Mar 29 2018 02:45:05
%S A134471 0,1,1,3,4,7,60,67,395,462,857,1319,16685,84744,101429,186173,1032294,
%T A134471 1218467,15653898,16872365,32526263,49398628,81924891,213248410,
%U A134471 295173301,508421711,803595012,1312016723,3427628458,11594902097,26617432652,64829767401
%N A134471 Numerators of the convergents of the continued fraction expansion of -zeta(1/2)/sqrt(2*Pi).
%H A134471 G. C. Greubel, <a href="/A134471/b134471.txt">Table of n, a(n) for n = 1..1000</a>
%H A134471 Hans J. H. Tuenter, <a href="http://dx.doi.org/10.1080/07474940701620998">Overshoot in the Case of Normal Variables: Chernoff's Integral, Latta's Observation and Wijsman's Sum</a>, Sequential Analysis, 26(4) (2007) 481-488.
%t A134471 Numerator[Convergents[-Zeta[1/2]/Sqrt[2Pi],30]] (* _Harvey P. Dale_, Sep 07 2015 *)
%Y A134471 Cf. A134469 (Decimal expansion), A134470 (Continued fraction expansion), A134472 (Denominators of continued fraction convergents).
%K A134471 frac,nonn
%O A134471 1,4
%A A134471 _Hans J. H. Tuenter_, Oct 27 2007
%E A134471 More terms from _Harvey P. Dale_, Sep 07 2015