cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134472 Denominators of the convergents of the continued fraction expansion of -zeta(1/2)/sqrt(2*Pi).

This page as a plain text file.
%I A134472 #10 Mar 29 2018 15:24:47
%S A134472 1,1,2,5,7,12,103,115,678,793,1471,2264,28639,145459,174098,319557,
%T A134472 1771883,2091440,26869163,28960603,55829766,84790369,140620135,
%U A134472 366030639,506650774,872681413,1379332187,2252013600,5883359387,19902091761,45687542909,111277177579,268241898067
%N A134472 Denominators of the convergents of the continued fraction expansion of -zeta(1/2)/sqrt(2*Pi).
%H A134472 G. C. Greubel, <a href="/A134472/b134472.txt">Table of n, a(n) for n = 13..1012</a>
%H A134472 Hans J. H. Tuenter, <a href="http://dx.doi.org/10.1080/07474940701620998">Overshoot in the Case of Normal Variables: Chernoff's Integral, Latta's Observation and Wijsman's Sum</a>, Sequential Analysis, 26(4) (2007) 481-488.
%t A134472 Denominator[Convergents[-Zeta[1/2]/Sqrt[2 Pi], 50]] (* _G. C. Greubel_, Mar 28 2018 *)
%Y A134472 Cf. A134469 (Decimal expansion), A134470 (Continued fraction expansion), A134471 (Numerators of continued fraction convergents).
%K A134472 frac,nonn
%O A134472 13,3
%A A134472 _Hans J. H. Tuenter_, Oct 27 2007
%E A134472 Terms a(33) onward added by _G. C. Greubel_, Mar 28 2018