This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A134538 #27 Jun 06 2025 00:17:18 %S A134538 4,19,44,79,124,179,244,319,404,499,604,719,844,979,1124,1279,1444, %T A134538 1619,1804,1999,2204,2419,2644,2879,3124,3379,3644,3919,4204,4499, %U A134538 4804,5119,5444,5779,6124,6479,6844,7219,7604,7999,8404,8819,9244,9679,10124,10579,11044 %N A134538 a(n) = 5*n^2 - 1. %C A134538 For k != 0, the quintic polynomials of the form x^5 + 5*(5*k^2 - 1)*x + 4*(5*k^2 - 1) have Galois group A5 (order 60) over rational numbers. %H A134538 Vincenzo Librandi, <a href="/A134538/b134538.txt">Table of n, a(n) for n = 1..1000</a> %H A134538 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A134538 G.f.: x*(-4-7*x+x^2)/(-1+x)^3. - _R. J. Mathar_, Nov 14 2007 %F A134538 From _Amiram Eldar_, Feb 04 2021: (Start) %F A134538 Sum_{n>=1} 1/a(n) = (1 - (Pi/sqrt(5))*cot(Pi/sqrt(5)))/2. %F A134538 Sum_{n>=1} (-1)^(n+1)/a(n) = ((Pi/sqrt(5))*csc(Pi/sqrt(5)) - 1)/2. %F A134538 Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(5))*csc(Pi/sqrt(5)). %F A134538 Product_{n>=1} (1 - 1/a(n)) = csc(Pi/sqrt(5))*sin(sqrt(2/5)*Pi)/sqrt(2). (End) %F A134538 From _Elmo R. Oliveira_, Jun 04 2025: (Start) %F A134538 E.g.f.: 1 + (-1 + 5*x + 5*x^2)*exp(x). %F A134538 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End) %t A134538 Table[5n^2 - 1, {n, 1, 50}] %t A134538 CoefficientList[Series[(4+7*x-x^2)/(1-x)^3,{x,0,50}],x] (* _Vincenzo Librandi_, Jul 09 2012 *) %o A134538 (Magma) [5*n^2-1: n in [1..50]]; // _Vincenzo Librandi_, Jul 09 2012 %o A134538 (PARI) a(n)=5*n^2-1 \\ _Charles R Greathouse IV_, Jul 01 2013 %K A134538 nonn,easy %O A134538 1,1 %A A134538 _Artur Jasinski_, Oct 30 2007