A134541 Triangle read by rows: A000012 * A054525 regarded as infinite lower triangular matrices.
1, 0, 1, -1, 1, 1, -1, 0, 1, 1, -2, 0, 1, 1, 1, -1, -1, 0, 1, 1, 1, -2, -1, 0, 1, 1, 1, 1, -2, -1, 0, 0, 1, 1, 1, 1, -2, -1, -1, 0, 1, 1, 1, 1, 1, -1, -2, -1, 0, 0, 1, 1, 1, 1, 1, -2, -2, -1, 0, 0, 1, 1, 1, 1, 1, 1, -2, -1, -1, -1, 0, 0, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
First few rows of the triangle: 1; 0, 1; -1, 1, 1; -1, 0, 1, 1; -2, 0, 1, 1, 1; -1, -1, 0, 1, 1, 1; -2, -1, 0, 1, 1, 1, 1; -2, -1, 0, 0, 1, 1, 1, 1; -2, -1, -1, 0, 1, 1, 1, 1, 1; -1, -2, -1, 0, 0, 1, 1, 1, 1, 1; ...
Crossrefs
Programs
-
Mathematica
Clear[t, s, n, k, z, x]; z = 1; nn = 10; t[n_, k_] := t[n, k] = If[n >= k, If[k == 1, 1 - Sum[t[n, k + i]/(i + 1)^(s - 1), {i, 1, n - 1}], t[Floor[n/k], 1]], 0]; Flatten[Table[Table[Limit[t[n, k], s -> z], {k, 1, n}], {n, 1, nn}]] (* Mats Granvik, Jul 22 2012 *) (* updated Mats Granvik, Apr 10 2016 *)
Formula
Recurrence: T(n, k) = If n >= k then If k = 1 then 1 - Sum_{i=1..n-1} T(n, k + i)/(i + 1)^(s - 1) else T(floor(n/k) else 1)) else 0). - Mats Granvik, Apr 17 2016
Extensions
More terms from Amiram Eldar, Jun 09 2024
Comments