This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A134566 #6 Nov 29 2017 03:35:15 %S A134566 2,1,5,2,1,2,1,13,2,1,5,2,1,2,1,5,2,1,2,1,34,2,1,5,2,1,2,1,13,2,1,5,2, %T A134566 1,2,1,5,2,1,2,1,13,2,1,5,2,1,2,1,5,2,1,2,1,89,2,1,5,2,1,2,1,13,2,1,5, %U A134566 2,1,2,1,5,2,1,2,1,34,2,1,5,2,1,2,1,13,2,1,5,2,1,2,1,5,2,1,2,1,13,2,1,5,2,1 %N A134566 a(n) = least m such that {-m*tau} > {n*tau}, where { } denotes fractional part and tau = (1 + sqrt(5))/2. %C A134566 The terms are members of A001519, the odd-indexed Fibonacci numbers. The defining inequality {-m*tau} > {n*tau} is equivalent to {-m*tau} + {n*tau} < 1. %C A134566 The terms belong to A001519, the odd-indexed Fibonacci numbers. The defining inequality {-m*tau} > {n*tau} is equivalent to {m*tau} + {n*tau} < 1. - _Clark Kimberling_, Nov 02 2007 %e A134566 a(3)=5 because {m*tau} < {3*tau} = 0.854... for m=1,2,3,4, whereas {-5*tau} = 0.909..., so that 5 is the least m for which {m*tau} > {3*tau}. %e A134566 a(3)=5 because {-m*tau} < {3*tau} = 0.854... for m=1,2,3,4 whereas {-5*tau} = 0.9289..., so that 5 is the least m for which {-m*tau} > {2*tau}. %Y A134566 Cf. A134567, A134570, A134571. %K A134566 nonn %O A134566 1,1 %A A134566 _Clark Kimberling_, Nov 01 2007, Nov 02 2007 %E A134566 More terms from _Clark Kimberling_, Nov 02 2007