cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134600 Composite numbers such that the square mean of their prime factors is an integer (where the prime factors are taken with multiplicity and the square mean of c and d is sqrt((c^2+d^2)/2)).

Original entry on oeis.org

4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 119, 121, 125, 128, 161, 169, 243, 256, 289, 343, 351, 361, 378, 455, 512, 527, 529, 595, 625, 721, 729, 841, 845, 918, 959, 961, 1024, 1045, 1081, 1241, 1265, 1323, 1331, 1369, 1375, 1547, 1615, 1681, 1792, 1849, 1855
Offset: 1

Views

Author

Hieronymus Fischer, Nov 11 2007

Keywords

Comments

All perfect prime powers (A025475) with power > 0 are included.
Originally, the definition started with "Nonprime numbers ..." and the first term was equal to 1. This is misleading, since 1 has no prime factors. - Hieronymus Fischer, Apr 20 2013

Examples

			a(5) = 25, since 25=5*5 and sqrt((5^2+5^2)/2)=5;
a(23) = 378, since 378=2*3*3*3*7 and sqrt((2^2+3*3^2+7^2)/5)=sqrt(16)=4.
		

Crossrefs

Programs

  • Mathematica
    f[{a_,b_}]:=Table[a,b];Select[Range[2,1855],!PrimeQ[#]&&IntegerQ[ RootMeanSquare[f/@FactorInteger[#]//Flatten] ]&] (* James C. McMahon, Apr 08 2025 *)

Extensions

Definition clarified and edited by Hieronymus Fischer, Apr 20 2013