A134601 Composite numbers such that the square mean of their prime factors is a prime (where the prime factors are taken with multiplicity and the square mean of c and d is sqrt((c^2+d^2)/2)).
4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 119, 121, 125, 128, 161, 169, 243, 256, 289, 343, 351, 361, 512, 529, 595, 625, 721, 729, 841, 845, 959, 961, 1024, 1045, 1081, 1241, 1323, 1331, 1369, 1375, 1547, 1681, 1792, 1849, 1855, 2048, 2187, 2197, 2209, 2401
Offset: 1
Keywords
Examples
a(5) = 25, since 25=5*5 and sqrt((5^2+5^2)/2)=5; a(13) = 119, since 119=7*17 and sqrt((7^2+17^2)/2)=sqrt(169)=13.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[{a_,b_}]:=Table[a,b];Select[Range[2,2401],!PrimeQ[#]&&PrimeQ[ RootMeanSquare[f/@FactorInteger[#]//Flatten] ]&] (* James C. McMahon, Apr 08 2025 *)
Extensions
Definition clarified and edited by Hieronymus Fischer, Apr 20 2013
Comments