cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134604 Numbers (excluding primes and powers of primes) such that the square mean of their prime factors is a prime (where the square mean of c and d is sqrt((c^2+d^2)/2)).

Original entry on oeis.org

119, 161, 351, 595, 721, 845, 959, 1045, 1081, 1241, 1323, 1375, 1547, 1792, 1855, 2457, 2645, 2737, 3281, 3367, 3509, 3887, 3995, 4347, 4625, 4655, 4681, 5376, 5795, 6545, 6615, 6643, 6993, 7505, 7705, 7803, 7889, 8019, 9295, 9625, 10557, 11845
Offset: 1

Views

Author

Hieronymus Fischer, Nov 11 2007

Keywords

Comments

Numbers included in A134601, but not in A025475. a(1)=119 is the minimal number with this property.

Examples

			a(2) = 161, since 161 = 7*23 and sqrt((7^2+23^2)/2) = sqrt(289)=17 is a prime.
a(10183) = 114383711 = 13*83*227*467 and sqrt((13^2+83^2+227^2+467^2)/4) = sqrt(69169) = 263 is a prime.
		

Crossrefs

Programs

  • Mathematica
    f[{a_,b_}]:=Table[a,b];Select[Range[2,11845],!PrimePowerQ[#]&&PrimeQ[ RootMeanSquare[f/@FactorInteger[#]//Flatten] ]&] (* James C. McMahon, Apr 09 2025 *)

Extensions

Minor edits by Hieronymus Fischer, Apr 22 2013