A134604 Numbers (excluding primes and powers of primes) such that the square mean of their prime factors is a prime (where the square mean of c and d is sqrt((c^2+d^2)/2)).
119, 161, 351, 595, 721, 845, 959, 1045, 1081, 1241, 1323, 1375, 1547, 1792, 1855, 2457, 2645, 2737, 3281, 3367, 3509, 3887, 3995, 4347, 4625, 4655, 4681, 5376, 5795, 6545, 6615, 6643, 6993, 7505, 7705, 7803, 7889, 8019, 9295, 9625, 10557, 11845
Offset: 1
Keywords
Examples
a(2) = 161, since 161 = 7*23 and sqrt((7^2+23^2)/2) = sqrt(289)=17 is a prime. a(10183) = 114383711 = 13*83*227*467 and sqrt((13^2+83^2+227^2+467^2)/4) = sqrt(69169) = 263 is a prime.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[{a_,b_}]:=Table[a,b];Select[Range[2,11845],!PrimePowerQ[#]&&PrimeQ[ RootMeanSquare[f/@FactorInteger[#]//Flatten] ]&] (* James C. McMahon, Apr 09 2025 *)
Extensions
Minor edits by Hieronymus Fischer, Apr 22 2013
Comments