cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134708 Even superperfect numbers divided by 2.

Original entry on oeis.org

1, 2, 8, 32, 2048, 32768, 131072, 536870912, 576460752303423488, 154742504910672534362390528, 40564819207303340847894502572032, 42535295865117307932921825928971026432
Offset: 1

Views

Author

Omar E. Pol, Nov 07 2007, Apr 23 2008

Keywords

Comments

a(13) and a(14) have 157 and 183 digits respectively. - R. J. Mathar, Jan 07 2008
Largest proper divisor of n-th even superperfect number A061652(n). Also, largest proper divisor of n-th superperfect number A019279(n), if there are no odd superperfect numbers.
Indices of even hexagonal numbers (A014635) that are also even perfect numbers. - Omar E. Pol, Jan 11 2009

Examples

			a(5) = 2048 because the 5th even superperfect number is 4096 and 4096/2 = 2048.
		

Crossrefs

Programs

  • Maple
    A000043 := proc(n) op(n,[2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213]) ; end: A061652 := proc(n) 2^(A000043(n)-1) ; end: A134708 := proc(n) A061652(n)/2 ; end: seq(A134708(n),n=1..14) ; # R. J. Mathar, Jan 07 2008
  • Mathematica
    With[{max = 12}, 2^(MersennePrimeExponent[Range[max]] - 2)] (* Amiram Eldar, Oct 21 2024 *)

Formula

a(n) = A061652(n)/2.
a(n) = 2^(A000043(n)-2). - Omar E. Pol, Mar 01 2008
a(n) = A032742(A061652(n)). Also, a(n) = A032742(A019279(n)), if there are no odd superperfect numbers.
a(n) = Sum_{x=1..n-th superperfect number} x*(-1)^x. - Juri-Stepan Gerasimov, Jul 21 2009

Extensions

More terms from R. J. Mathar, Jan 07 2008