cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134755 Minimal number such that all greater numbers can be written as sums of squares of primes in more than n ways.

Original entry on oeis.org

23, 39, 55, 64, 68, 73, 80, 84, 91, 96, 100, 105, 109, 113, 114, 118, 122, 123, 127, 131, 132, 136, 140, 140, 144, 145, 145, 149, 149, 153, 154, 156, 158, 160, 163, 164, 167, 168, 168, 172, 172, 176, 176, 176, 180, 180, 181, 181, 185, 185, 185, 189, 189, 190
Offset: 0

Views

Author

Hieronymus Fischer, Nov 11 2007

Keywords

Comments

The sequence is well-defined, in that a(n) exists for all n>=0. Proof by induction: a(0) exists. We set b(j):=number of ways to write j as sum of squares of primes (=A090677). If a(n) exists, then b(j)>n for all j>a(n). Setting m:=a(n)+1, we find that there are n+1 sum of squares of primes B(0,i), 1<=i<=n+1, with m=B(0,i).
Further there are n+1 such sum expressions B(1,i), B(2,i) and B(3,i), 1<=i<=n+1, representing m+1, m+2 and m+3, respectively. For all j>a(n) we have j=m+4*floor((j-m)/4)+(j-m) mod 4. Thus j=m+r+s*2^2, where r=0,1,2 or 3. Hence n can be written B(r,i)+s*2^2 and there are n+1 such representations.
Let q be the maximal prime number (to be squared) occurring as a term within those sum expressions B(r,i), 0<=r<=3,1<=i<=n+1. We select a prime number p>q and we set c:=a(n)+p^2. For j>c, we have the n+1 representations B(r(j),i)+s(j)*2^2. Additionally, for j-p^2 (which is >a(n)) there are also n+1 representations B(r_p,i)+s_p*2^2, where r_p:=r(j-p^2), s_p:=s(j-p^2).
Thus j can be written B(r(j),i)+s(j)*2^2, 1<=i<=n+1 and B(r_p,i)+s_p*2^2+p^2, 1<=i<=n+1. By choice of p all these sum representations of j are different, which implies, that there are 2n+2 such representations. It follows b(j)>2n+2>n+1 for all j>c, which implies, that a(n+1) exists.

Examples

			a(0)=23, since numbers >23 can be written as sum of squares of primes.
a(1)=39, since there are at least two ways, to write a number >39 as a sum of squares of primes.
		

Crossrefs

Formula

a(n)=min( m | A090677(j)>n for all j>m).