This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A134799 #25 Oct 17 2024 14:46:10 %S A134799 1,3,81,1594323,12157665459056928801, %T A134799 5391030899743293631239539488528815119194426882613553319203 %N A134799 a(n) = 3^((3^n - 1)/2). %C A134799 Number of partitions into "bus routes" of the graph G_{n+1} defined below. %C A134799 These seem to be one-third the reduced denominators of Newton's iteration for 1/sqrt(3), starting with 1/3. - _Steven Finch_, Oct 08 2024 %H A134799 Andrew Howroyd, <a href="/A134799/b134799.txt">Table of n, a(n) for n = 0..7</a> %H A134799 Author?, <a href="http://image.myany.jp/org/6c511f3698cf6db33d63d6450f331344.jpg">Mitsumata tree</a> %H A134799 X. Gourdon and P. Sebah, <a href="http://numbers.computation.free.fr/Constants/Sqrt2/sqrt2.html">Pythagoras' Constant</a>. %F A134799 a(n) is conjectured to be one-third the reduced denominator of b(n) = (3/2)*b(n-1)*(1 - b(n-1)^2); b(0) = 1/3. - _Steven Finch_, Oct 08 2024 %F A134799 Limit_{n -> oo} A376870(n)/(3*a(n)) = 1/sqrt(3) = A020760. - _Steven Finch_, Oct 08 2024 %e A134799 .........|..................G_1 %e A134799 **** %e A134799 .......__|__................G_2 %e A134799 .........| %e A134799 **** %e A134799 .__|_____|_____|__..........G_3 %e A134799 ...|.....|.....| %e A134799 .........| %e A134799 .......__|__ %e A134799 .........| %e A134799 ****. %e A134799 ..._|_........._|_..........G_4 %e A134799 _|__|_____|_____|__|_ %e A134799 .|._|_....|...._|_.| %e A134799 ....|.....|.....| %e A134799 ......_|__|__|_ %e A134799 .......|._|_.| %e A134799 ..........| %e A134799 **** %e A134799 G_1 = o---. = rooted tree with one edge and one leaf node. For n > 0, G_{n+1} is obtained from G_n by splitting each leaf node into three. %t A134799 3^((3^Range[0, 6] - 1)/2) (* _Paolo Xausa_, Oct 17 2024 *) %Y A134799 Cf. A131709, A020760, A376870. %K A134799 nonn,easy %O A134799 0,2 %A A134799 _Yasutoshi Kohmoto_, Jan 09 2008 %E A134799 Edited by _N. J. A. Sloane_, Jan 29 2008 %E A134799 a(5) from _Andrew Howroyd_, Oct 07 2024