This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A134830 #13 Jul 01 2023 08:27:10 %S A134830 1,1,0,1,0,1,2,1,1,2,6,4,3,2,9,24,18,14,11,9,44,120,96,78,64,53,44, %T A134830 265,720,600,504,426,362,309,265,1854,5040,4320,3720,3216,2790,2428, %U A134830 2119,1854,14833,40320,35280,30960,27240,24024,21234,18806,16687,14833 %N A134830 Triangle of rank k of permutations of {1,2,...,n}. %C A134830 The rank k of a permutation of n elements is the first position of a fixed point. If there is no fixed point then k=n+1 and R(n,n+1)=A000166(n), the derangements numbers (subfactorials). %D A134830 Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 176, Table 5.3 (without row n=0 and column k=1), p. 185. %H A134830 Wolfdieter Lang, <a href="/A134830/a134830.txt">First 10 rows and more</a>. %F A134830 R(n,k)=0 if n+1<k, R(n,n+1)=D(n),n>=0, with D(n):=A000166(n) the derangements numbers (subfactorials), R(n,k)=sum((-1)^j*binomial(k-1,j)*(n-j-1)!,j=0..k-1), k from 1,..,n. %F A134830 Subtriangle without diagonal k=n+1: R(n,k)=sum(binomial(n-k,j)*D(k+j-1),j=0..n-k), k=1,...,n, n>=1, with D(n):=A000166(n). %F A134830 R(n,k) = R(n,k-1) - R(n-1,k-1), R(0,0)=1, R(n,1)=(n-1)!. %e A134830 Triangle begins: %e A134830 [1]; %e A134830 [1,0]; %e A134830 [1,0,1]; %e A134830 [2,1,1,2]; %e A134830 [6,4,3,2,9]; %e A134830 [24,18,14,11,9,44]; %e A134830 ... %e A134830 R(4,2)=4 from the four rank k=2 partitions of 4 elements (3,2,1,4), (3,2,4,1), (4,2,1,3) and (4,2,3,1). %Y A134830 Row sums n!=A000142(n). Alternating row sums A134831. %K A134830 nonn,easy,tabl %O A134830 0,7 %A A134830 _Wolfdieter Lang_, Jan 21 2008