A134862 Wythoff ABB numbers.
8, 21, 29, 42, 55, 63, 76, 84, 97, 110, 118, 131, 144, 152, 165, 173, 186, 199, 207, 220, 228, 241, 254, 262, 275, 288, 296, 309, 317, 330, 343, 351, 364, 377, 385, 398, 406, 419, 432, 440, 453, 461, 474, 487, 495, 508, 521, 529, 542, 550, 563, 576, 584, 597
Offset: 1
Keywords
Links
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 5.
- Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences, 11 (2008), Article 08.3.3.
Crossrefs
Programs
-
Mathematica
A[n_] := Floor[n * GoldenRatio]; B[n_] := Floor[n * GoldenRatio^2]; a[n_] := A[B[B[n]]]; Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)
-
Python
from sympy import floor from mpmath import phi def A(n): return floor(n*phi) def B(n): return floor(n*phi**2) def a(n): return A(B(B(n))) # Indranil Ghosh, Jun 10 2017
-
Python
from math import isqrt def A134862(n): return 5*(n+isqrt(5*n**2)>>1)+3*n # Chai Wah Wu, Aug 10 2022
Comments