cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134863 Wythoff BAB numbers.

Original entry on oeis.org

7, 20, 28, 41, 54, 62, 75, 83, 96, 109, 117, 130, 143, 151, 164, 172, 185, 198, 206, 219, 227, 240, 253, 261, 274, 287, 295, 308, 316, 329, 342, 350, 363, 376, 384, 397, 405, 418, 431, 439, 452, 460, 473, 486, 494, 507, 520, 528, 541, 549, 562, 575, 583, 596
Offset: 1

Views

Author

Clark Kimberling, Nov 14 2007

Keywords

Comments

The lower and upper Wythoff sequences, A and B, satisfy the complementary equation BAB = 2A+3B-1.
Also numbers with suffix string 1010, when written in Zeckendorf representation. - A.H.M. Smeets, Mar 24 2024
The asymptotic density of this sequence is 1/phi^5 = phi^5 - 11 = A244593 - 4 = 0.0901699... . - Amiram Eldar, Mar 24 2025

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.

Programs

  • Mathematica
    A[n_] := Floor[n * GoldenRatio]; B[n_] := Floor[n * GoldenRatio^2]; a[n_] := B[A[B[n]]]; Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)
  • Python
    from sympy import floor
    from mpmath import phi
    def A(n): return floor(n*phi)
    def B(n): return floor(n*phi**2)
    def a(n): return B(A(B(n))) # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import isqrt
    def A134863(n): return 5*(n+isqrt(5*n**2)>>1)+3*n-1 # Chai Wah Wu, Aug 11 2022

Formula

a(n) = B(A(B(n))), n>=1, with A=A000201, the lower Wythoff sequence and B=A001950, the upper Wythoff sequence.
From A.H.M. Smeets, Mar 24 2024: (Start)
a(n) = 2*A(n) + 3*B(n) - 1 (see Clark Kimberling 2008), with A=A000201, B=A001950, the lower and upper Wythoff sequences, respectively.
Equals {A035336}\{A134861} (= Wythoff BA \ Wythoff BAA). (End)