cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134888 E_8 numbers: a(n) = 2^(2*n) * 3^(3*n) * 5^n * 839^n. (Constants are prime numbers).

This page as a plain text file.
%I A134888 #24 Jul 14 2025 06:41:41
%S A134888 1,453060,205263363600,92996619512616000,42133048436385804960000,
%T A134888 19088798924588952795177600000,8648371240774270953383163456000000,
%U A134888 3918231074345191198139776035375360000000,1775193770542832324229206930587160601600000000
%N A134888 E_8 numbers: a(n) = 2^(2*n) * 3^(3*n) * 5^n * 839^n. (Constants are prime numbers).
%C A134888 The result of the exceptional Lie group E_8 calculation is a matrix with 453060 rows and columns. Size of the matrix = a(1) = 453060. Number of entries = a(2) = 205263363600.
%H A134888 Andrew Howroyd, <a href="/A134888/b134888.txt">Table of n, a(n) for n = 0..100</a>
%H A134888 The American Institute of Mathematics, <a href="http://aimath.org/E8">Mathematicians Maps E_8</a>.
%H A134888 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (453060).
%F A134888 a(n) = 2^(2*n) * 3^(3*n) * 5^n * 839^n.
%F A134888 O.g.f.: 1/(1-453060*x). - _R. J. Mathar_, Nov 24 2007
%F A134888 a(n) = 453060^n.
%F A134888 From _Elmo R. Oliveira_, Jul 05 2025: (Start)
%F A134888 E.g.f.: exp(453060*x).
%F A134888 a(n) = 453060*a(n-1).
%F A134888 a(n) = 540^n * A135640(n). (End)
%e A134888 a(1) = 453060 because 2^(2*1)=4, 3^(3*1)=27, 5^1=5, 839^1=839 and we can write 4*27*5*839 = 453060.
%e A134888 a(2) = 205263363600 because 2^(2*2)=16, 3^(3*2)=729, 5^2=25, 839^2=703921 and we can write 16*729*25*703921=205263363600.
%e A134888 a(1)^2 = a(2): 453060*453060 = 205263363600.
%t A134888 NestList[453060*# &, 1, 10] (* _Paolo Xausa_, Jul 14 2025 *)
%Y A134888 Cf. A064730, A134950, A134960, A135639, A135640.
%K A134888 nonn,easy
%O A134888 0,2
%A A134888 _Omar E. Pol_, Nov 22 2007
%E A134888 Terms a(5) and beyond from _Andrew Howroyd_, Feb 02 2020