cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A135999 Numbers that are both triangular numbers A000217 and triangle-shaped numbers A134999.

Original entry on oeis.org

105, 120, 136, 153, 171, 190, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 703, 780, 820, 861, 903, 946, 990, 1596, 1711, 2145, 2346, 3240, 3321, 3486, 3570, 3741, 4371, 4560, 4753, 5565
Offset: 1

Views

Author

Omar E. Pol, Dec 10 2007

Keywords

Comments

The number 496 appears to be the unique perfect number A000396 of this sequence. The interesting numbers 120 and 153 are supertriangular numbers.

Examples

			The numbers 120 as a triangle-shaped number A134999:
. 2 .
1 . .
. . 0
The number 120 as a triangular number A000217:
. . . . . . . O
. . . . . . .O O
. . . . . . O O O
. . . . . .O O O O
. . . . . O O O O O
. . . . .O O O O O O
. . . . O O O O O O O
. . . .O O O O O O O O
. . . O O O O O O O O O
. . .O O O O O O O O O O
. . O O O O O O O O O O O
. .O O O O O O O O O O O O
. O O O O O O O O O O O O O
.O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O <--- A000217(15)=120.
		

Crossrefs

A301516 Numbers n with decimal expansion (d_1, ..., d_k) such that the convex hull of the set of points { (i, d_i), i = 1..k } has positive area.

Original entry on oeis.org

100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 148, 149, 150, 151, 152, 153, 154, 155
Offset: 1

Views

Author

Rémy Sigrist, Dec 16 2018

Keywords

Comments

This sequence is the complement of the straight-line numbers (0..99 alongside A135643).
This sequence first differs from A134999 at n = 857: a(857) = 1001 whereas A134999(857) = 1011.

Crossrefs

Programs

  • PARI
    is(n, base=10) = my (d=digits(n, base)); for (i=1, #d-2, if (d[i]+d[i+2]-2*d[i+1], return (1))); return (0)
    
  • Python
    def ok(n):
        d = list(map(int, str(n)))
        return any(d[i]+d[i+2]-2*d[i+1] != 0 for i in range(len(d)-2))
    print([k for k in range(1002) if ok(k)]) # Michael S. Branicky, Aug 03 2022 after Rémy Sigrist
Showing 1-2 of 2 results.