This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135027 #22 May 30 2021 22:05:42 %S A135027 8,19,35,46,55,71,145,152,179,251,332,361,449,451,548,649,4499,20249, %T A135027 20251,24499,100549,114499,316261 %N A135027 Numbers k such that the sum of the digits of k^2 is 10. Multiples of 10 are omitted. %C A135027 A subsequence of A056020. - _R. J. Mathar_, Feb 10 2008 %C A135027 Next term > 10000000. - _R. J. Mathar_, Oct 20 2009 %C A135027 If it exists, a(24) > 10^10. - _Hugo Pfoertner_, May 17 2021 %C A135027 If it exists, a(24) > 10^29. - _Michael S. Branicky_, May 30 2021 %H A135027 Michael S. Branicky, <a href="/A135027/a135027.txt">Python program</a> %e A135027 Corresponding squares are 64, 361, 1225, 2116, 3025, 5041, 21025, 23104, 32041, 63001, 110224, 130321, 201601, 203401, 300304, 421201, 20241001, 410022001, 410103001, 600201001, 10110101401, 13110021001, 100021020121. %e A135027 8^2 = 64 and 6+4 = 10. 316261^2 = 100021020121 and 1+0+0+0+2+1+0+2+0+1+2+1 = 10. - _Zak Seidov_, Aug 26 2009 %t A135027 s={};Do[If[Mod[n,10]>0&&10==Total[IntegerDigits[n^2]],AppendTo[s,n]], {n,10^8}];s (* _Zak Seidov_, Aug 26 2009 *) %o A135027 (Python) %o A135027 def A007953(n): %o A135027 a=0 %o A135027 sh=n %o A135027 while sh > 0: %o A135027 a += sh % 10 %o A135027 sh //= 10 %o A135027 return a %o A135027 def isA135027(n): %o A135027 if n % 10 == 0: %o A135027 return False %o A135027 else: %o A135027 return A007953(n**2) == 10 %o A135027 for n in range(70000): %o A135027 if isA135027(n): %o A135027 print(n) %o A135027 # _R. J. Mathar_, Oct 20 2009 %o A135027 (Python) # See linked program to go to large numbers %o A135027 def ok(n): return n%10 != 0 and sum(map(int, str(n*n))) == 10 %o A135027 print(list(filter(ok, range(316262)))) # _Michael S. Branicky_, May 30 2021 %o A135027 (PARI) is(n) = sumdigits(n^2)==10 && n%10 > 0 \\ _Felix Fröhlich_, May 17 2021 %Y A135027 Cf. A007953, A056020. %K A135027 base,more,nonn %O A135027 1,1 %A A135027 _Zak Seidov_, Feb 10 2008