This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135066 #11 Feb 07 2021 14:58:02 %S A135066 2,7,11,101 %N A135066 Primes p such that p^3 is a palindrome. %C A135066 Note that all first 4 listed terms are the palindromes. Corresponding palindromic cubes a(n)^3 are listed in A135067 = {8, 343, 1331, 1030301, ...}. PrimePi[ a(n) ] = {1, 4, 5, 26, ...}. %C A135066 No further terms less than 1.29 * 10^10. - _Michael S. Branicky_, Feb 07 2021 %H A135066 Patrick De Geest, <a href="http://www.worldofnumbers.com/cube.htm">Palindromic Cubes</a> %F A135066 a(n) = A135067(n)^(1/3). %e A135066 a(3) = 11 because 11^3 = 1331 is a palindrome. %t A135066 Do[ p = Prime[n]; f = p^3; If[ f == FromDigits[ Reverse[ IntegerDigits[ f ] ] ], Print[ {n, p, f} ]], {n, 1, 200000} ] %o A135066 (Python) %o A135066 from sympy import nextprime %o A135066 def ispal(n): s = str(n); return s == s[::-1] %o A135066 p = 2 %o A135066 while True: %o A135066 if ispal(p**3): print(p) %o A135066 p = nextprime(p) # _Michael S. Branicky_, Feb 07 2021 %Y A135066 Cf. A002780 (cube is a palindrome), A069748 (n and n^3 are both palindromes), A002781 (palindromic cubes), A135067 (palindromic cubes of primes). %K A135066 nonn,base,more %O A135066 1,1 %A A135066 _Alexander Adamchuk_, Nov 16 2007