This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135074 #28 Nov 25 2020 17:41:01 %S A135074 1,3,16,106,851,8044,87540,1078177,14827510,225228130,3745187549, %T A135074 67666969438,1320018345504,27651573264631,619077538462468, %U A135074 14752261527199414,372797929345665683,9958134039336196072,280354873141108774272,8297089960595144115505,257514010200875255884522 %N A135074 A binomial recursion: a(n) is the coefficient of x in z(n), where z(1) = x and z(n) = 1 + Sum_{k=1..n-1} (binomial(n,k) + 1)*z(k) for n > 1. %H A135074 Vaclav Kotesovec, <a href="/A135074/b135074.txt">Table of n, a(n) for n = 1..400</a> %F A135074 Let z(1) = x and z(n) = 1 + Sum_{k=1..n-1}( (1 + binomial(n,k))*z(k) ), then z(n) = p(n)*x + q(n). Lim n-->infinity p(n)/q(n) = (3*Pi -14) / (8 -3*Pi) = 3.2111824896280692148... %F A135074 a(n) ~ (14 - 3*Pi) * sqrt(n) * n! / (9 * sqrt(Pi) * log(2)^(n + 3/2)). - _Vaclav Kotesovec_, Nov 25 2020 %F A135074 E.g.f.: (exp(3*x/2)*(14 + 3*Pi) - 12*exp(3*x/2)*arcsin(exp(x/2)/sqrt(2))) / (18*(2 - exp(x))^(3/2)) - (2*(1 - 3*x) + exp(x)*(5 + 3*x))/(9*(2 - exp(x))). - _Vaclav Kotesovec_, Nov 25 2020 %t A135074 z[1] := x; z[n_] := 1 + Sum[(1 + Binomial[n, k])*z[k], {k, 1, n - 1}]; %t A135074 Table[Coefficient[z[n], x], {n, 1, 15}] (* _G. C. Greubel_, Sep 22 2016 *) %t A135074 z[1] := x; z[n_] := z[n] = Expand[1 + Sum[(1 + Binomial[n, k])*z[k], {k, 1, n-1}]]; Table[Coefficient[z[n], x], {n, 1, 30}] (* _Vaclav Kotesovec_, Nov 25 2020 *) %t A135074 nmax = 30; Rest[Simplify[CoefficientList[Series[(E^(3*x/2)*(14 + 3*Pi) - 12*E^(3*x/2)*ArcSin[E^(x/2)/Sqrt[2]]) / (18*(2 - E^x)^(3/2)) - (2*(1 - 3*x) + E^x*(5 + 3*x))/(9*(2 - E^x)), {x, 0, nmax}], x] * Range[0, nmax]!]] (* _Vaclav Kotesovec_, Nov 25 2020 *) %o A135074 (PARI) r=1;s=1;v=vector(120,j,x);for(n=2,120, g=r+sum(k=1,n-1,(s+binomial(n,k))*v[k]); v[n]=g); z(n)=v[n];p(n)=polcoeff(z(n),1);q(n)=polcoeff(z(n),0);a(n)=p(n); %Y A135074 Cf. A135075. %K A135074 nonn %O A135074 1,2 %A A135074 _Benoit Cloitre_, Nov 17 2007 %E A135074 New name from _Charles R Greathouse IV_, Sep 22 2016 %E A135074 More terms from _Amiram Eldar_, Nov 25 2020