This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135085 #17 Jun 22 2022 14:45:24 %S A135085 1,2,15,4140,10480142147,128064670049908713818925644, %T A135085 172134143357358850934369963665272571125557575184049758045339873395 %N A135085 a(n) = A000110(2^n). %C A135085 Number of set partitions of all subsets of a set, Bell(2^n). %F A135085 a(n) = |W| = Sum_{k=0..2^n} Stirling2(2^n,k) = Bell(2^n), where Stirling2(n) is the Stirling number of the second kind and Bell(n) is the Bell number. %F A135085 a(n) = exp(-1) * Sum_{k>=0} k^(2^n)/k!. - _Ilya Gutkovskiy_, Jun 13 2019 %e A135085 Let S={1,2,3,...,n} be a set of n elements and let SU be the set of all subsets of S including the empty set. The number of elements of SU is |SU| = 2^n. Now form all possible set partitions from SU including the empty set. This gives a set W and its number of elements is |W| = sum((stirling2(2^n,k)), k=0..2^n) = Bell(2^n). %e A135085 For S={1,2} we have SU = { {}, {1}, {2}, {1,2} } and W = %e A135085 { %e A135085 {{{}}, {1}, {2}, {1, 2}}, %e A135085 {{2}, {1, 2}, {{}, {1}}}, %e A135085 {{1}, {1, 2}, {{}, {2}}}, %e A135085 {{1}, {2}, {{}, {1, 2}}}, %e A135085 {{{}}, {1, 2}, {{1}, {2}}}, %e A135085 {{{1}, {2}}, {{}, {1, 2}}}, %e A135085 {{1, 2}, {{}, {1}, {2}}}, %e A135085 {{{}}, {2}, {{1}, {1, 2}}}, %e A135085 {{{1}, {1, 2}}, {{}, {2}}}, %e A135085 {{2}, {{}, {1}, {1, 2}}}, %e A135085 {{{}}, {1}, {{2}, {1, 2}}}, %e A135085 {{{2}, {1, 2}}, {{}, {1}}}, %e A135085 {{1}, {{}, {2}, {1, 2}}}, %e A135085 {{{}}, {{1}, {2}, {1, 2}}}, %e A135085 {{{}, {1}, {2}, {1, 2}}} %e A135085 } %e A135085 and |W| = 15. %p A135085 ZahlDerMengenAusMengeDerZerlegungenEinerMenge:=proc() local n,nend,arg,k,w; nend:=5; for n from 0 to nend do arg:=2^n; w[n]:=sum((stirling2(arg,k)), k=0..arg); od; print(w[0],w[1],w[2],w[3],w[4],w[5],w[6],w[7],w[8],w[9],w[10]); end proc; %t A135085 Table[BellB[2^n],{n,0,10}] (* _Geoffrey Critzer_, Jan 03 2014 *) %o A135085 (Python) %o A135085 from sympy import bell %o A135085 def A135085(n): return bell(2**n) # _Chai Wah Wu_, Jun 22 2022 %Y A135085 Cf. A000079, A000110, A008277, A077585, A135084. %K A135085 nonn %O A135085 0,2 %A A135085 _Thomas Wieder_, Nov 18 2007, Nov 19 2007