cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135090 Array read by antidiagonals: T(n, k) = Knuth's Fibonacci (or circle) product of n and k ("n o k"), n >= 0, k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 3, 0, 0, 5, 5, 0, 0, 8, 8, 8, 0, 0, 11, 13, 13, 11, 0, 0, 13, 18, 21, 18, 13, 0, 0, 16, 21, 29, 29, 21, 16, 0, 0, 18, 26, 34, 40, 34, 26, 18, 0, 0, 21, 29, 42, 47, 47, 42, 29, 21, 0, 0, 24, 34, 47, 58, 55, 58, 47, 34, 24, 0, 0, 26, 39, 55, 65, 68, 68, 65, 55, 39, 26, 0, 0, 29, 42, 63, 76, 76, 84, 76, 76, 63, 42, 29, 0, 0, 32, 47
Offset: 0

Views

Author

N. J. A. Sloane, May 17 2008

Keywords

Comments

This is a variant of A101330. See that entry for much more information.

Examples

			Array begins:
  n\k |  0   1   2   3   4    5    6    7    8    9 ...
  ----+------------------------------------------------
   0  |  0   0   0   0   0    0    0    0    0    0 ...
   1  |  0   3   5   8  11   13   16   18   21   24 ...
   2  |  0   5   8  13  18   21   26   29   34   39 ...
   3  |  0   8  13  21  29   34   42   47   55   63 ...
   4  |  0  11  18  29  40   47   58   65   76   87 ...
   5  |  0  13  21  34  47   55   68   76   89  102 ...
   6  |  0  16  26  42  58   68   84   94  110  126 ...
   7  |  0  18  29  47  65   76   94  105  123  141 ...
   8  |  0  21  34  55  76   89  110  123  144  165 ...
   9  |  0  24  39  63  87  102  126  141  165  189 ...
  ...
		

Crossrefs

Programs

  • Maple
    h := n -> floor(2*(n + 1)/(sqrt(5) + 3)):  # A060144(n+1)
    T := (n, k) -> 3*n*k - n*h(k) - k*h(n):
    seq(print(seq(T(n, k), k = 0..9)), n = 0..7);  # Peter Luschny, Mar 21 2024
  • Mathematica
    A135090[n_, k_] := 3*n*k - n*Floor[(k + 1) / GoldenRatio^2] - k*Floor[(n + 1) / GoldenRatio^2];
    Table[A135090[n-k, k], {n, 0, 15}, {k, 0, n}] (* Paolo Xausa, Mar 21 2024 *)

Formula

T(n, k) = 3*n*k - n*h(k) - k*h(n) where h(n) = A060144(n + 1). - Peter Luschny, Mar 21 2024