This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135161 #15 Sep 08 2022 08:45:32 %S A135161 -2,-3,11,183,1679,13407,101231,743103,5367359,38380287,272649551, %T A135161 1928319423,13596611039,95666704767,672114757871,4717029550143, %U A135161 33080299566719,231867445262847,1624598512962191,11379820536259263,79696895378138399,558069016462630527,3907436831406718511 %N A135161 a(n) = 7^n - 5^n - 3^n - 2^n. Constants are the prime numbers in decreasing order. %H A135161 G. C. Greubel, <a href="/A135161/b135161.txt">Table of n, a(n) for n = 0..1000</a> %H A135161 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (17,-101,247,-210). %F A135161 From _G. C. Greubel_, Sep 30 2016: (Start) %F A135161 a(n) = 17*a(n-1) - 101*a(n-2) + 247*a(n-3) - 210*a(n-4). %F A135161 G.f.: -x*(-2 + 31 x - 140 x^2 + 187 x^3)/((1 -2*x)*(1 -3*x)*(1 -5*x)*(1 -7*x)). %F A135161 E.g.f.: exp(7*x) - exp(5*x) - exp(3*x) - exp(2*x). (End) %e A135161 a(4) = 1679 because 7^4 = 2401, 5^4 = 625, 3^4 = 81, 2^4 = 16 and we can write 2401 -625 -81 -16 = 1679. %t A135161 Table[7^n-5^n-3^n-2^n,{n,0,30}] (* or *) LinearRecurrence[{17,-101,247,-210},{-2,-3,11,183},30] (* _Harvey P. Dale_, Sep 23 2016 *) %o A135161 (Magma)[7^n-5^n-3^n-2^n: n in [0..50]] // _Vincenzo Librandi_, Dec 14 2010 %o A135161 (PARI) a(n) = 7^n - 5^n - 3^n - 2^n \\ _Charles R Greathouse IV_, Sep 30 2016 %Y A135161 Cf. A000079, A000244, A000351, A000420, A001047, A074527, A007689, A135158, A135159, A135160. %K A135161 easy,sign %O A135161 0,1 %A A135161 _Omar E. Pol_, Nov 21 2007 %E A135161 More terms from _Vincenzo Librandi_, Dec 14 2010