This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135167 #14 Sep 15 2024 01:44:36 %S A135167 2,13,79,487,3091,20143,133939,903727,6161731,42325903,292298899, %T A135167 2026329967,14085955171,98111299663,684331355059,4778093404207, %U A135167 33385561441411,233393582449423,1632228682334419,11417969833438447,79887637214988451,559022711699743183,3912205265750868979 %N A135167 a(n) = 7^n + 5^n + 3^n - 2^n. Constants are the prime numbers in decreasing order. %H A135167 G. C. Greubel, <a href="/A135167/b135167.txt">Table of n, a(n) for n = 0..1000</a> %H A135167 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (17,-101,247,-210). %F A135167 a(n) = 7^n + 5^n + 3^n - 2^n. %F A135167 From _G. C. Greubel_, Sep 30 2016: (Start) %F A135167 a(n) = 17*a(n-1) - 101*a(n-2) + 247*a(n-3) - 210*a(n-4). %F A135167 G.f.: (2 - 21*x + 60*x^2 - 37*x^3)/((1 -2*x)*(1 -3*x)*(1 -5*x)*(1 -7*x)). %F A135167 E.g.f.: exp(7*x) + exp(5*x) + exp(3*x) - exp(2*x). (End) %e A135167 a(4)=3091 because 7^4=2401, 5^4=625, 3^4=81, 2^4=16 and we can write 2401+625+81-16=3091. %t A135167 Table[7^n + 5^n + 3^n - 2^n, {n, 0,50}] (* or *) LinearRecurrence[{17, -101, 247, -210}, {2, 13, 79, 487}, 50] (* _G. C. Greubel_, Sep 30 2016 *) %o A135167 (Magma) [7^n+5^n+3^n-2^n: n in [0..50]]; // _Vincenzo Librandi_, Dec 15 2010 %o A135167 (PARI) a(n)=7^n+5^n+3^n-2^n \\ _Charles R Greathouse IV_, Sep 30 2016 %Y A135167 Cf. A000079, A000244, A000351, A000420, A001047, A074527, A007689, A135158, A135159, A135160. %K A135167 easy,nonn %O A135167 0,1 %A A135167 _Omar E. Pol_, Nov 21 2007 %E A135167 More terms from _Vincenzo Librandi_, Dec 15 2010