cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135173 a(n) = 5^p - 3^p - 2^p, where p = prime(n).

This page as a plain text file.
%I A135173 #27 May 30 2025 11:35:31
%S A135173 12,90,2850,75810,48648930,1219100610,762810181890,19072323542370,
%T A135173 11920834803510690,186264446292181467330,4656612255401848810530,
%U A135173 72759575691550215703252290,45474735052173413319557911170,1136868376887903321203168728290,710542735733511371371429275935010
%N A135173 a(n) = 5^p - 3^p - 2^p, where p = prime(n).
%H A135173 Ivan Panchenko, <a href="/A135173/b135173.txt">Table of n, a(n) for n = 1..200</a>
%F A135173 a(n) = 5^p - 3^p - 2^p, with p = A000040(n).
%F A135173 a(n) = A057902(n) - A057901(n) - A034785(n). - _Michel Marcus_, Jun 14 2014
%e A135173 a(4) = 75810 because the 4th prime number is 7, 5^7 = 78125, 3^7 = 2187, 2^7 = 128 and 78125-2187-128 = 75810.
%p A135173 a:= n-> (p-> 5^p-3^p-2^p)(ithprime(n)):
%p A135173 seq(a(n), n=1..15);  # _Alois P. Heinz_, May 30 2025
%t A135173 5^# - 3^# - 2^# &/@Prime[Range[20]] (* _G. C. Greubel_, Sep 30 2016 *)
%o A135173 (Magma) [5^p-3^p-2^p: p in PrimesUpTo(100)]; // _Vincenzo Librandi_, Dec 14 2010
%o A135173 (PARI) a(n,p=prime(n))=5^p - 3^p - 2^p \\ _Charles R Greathouse IV_, Sep 30 2016
%Y A135173 Cf. A034785 (2^p), A057901 (3^p), A057902 (5^p).
%K A135173 nonn
%O A135173 1,1
%A A135173 _Omar E. Pol_, Nov 25 2007
%E A135173 More terms from _Vincenzo Librandi_, Dec 14 2010