cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135175 a(n) = 5^p + 3^p - 2^p, where p = prime(n).

This page as a plain text file.
%I A135175 #20 Jun 08 2025 19:54:33
%S A135175 30,144,3336,80184,49003224,1222289256,763068462216,19074648065304,
%T A135175 11921023089868344,186264583552936197096,4656613490748641378424,
%U A135175 72759576592118027485247016,45474735125119406073899483976,1136868377544417255992242883544,710542735786689000089344282510584
%N A135175 a(n) = 5^p + 3^p - 2^p, where p = prime(n).
%H A135175 Vincenzo Librandi, <a href="/A135175/b135175.txt">Table of n, a(n) for n = 1..200</a>
%F A135175 a(n) = 5^p + 3^p - 2^p with p = A000040(n).
%e A135175 a(4)=80184 because the 4th prime number is 7, 5^7=78125, 3^7=2187, 2^7=128 and 78125+2187-128=80184.
%p A135175 a:= n-> (p-> 5^p+3^p-2^p)(ithprime(n)):
%p A135175 seq(a(n), n=1..15);  # _Alois P. Heinz_, Jun 08 2025
%t A135175 5^#+3^#-2^#&/@Prime[Range[20]]  (* _Harvey P. Dale_, Apr 04 2011 *)
%t A135175 Table[5^p + 3^p - 2^p, {p, Prime[Range[20]]}] (* _Vincenzo Librandi_, May 24 2014 *)
%o A135175 (Magma) [5^p+3^p-2^p: p in PrimesUpTo(100)]; // _Vincenzo Librandi_, Dec 14 2010
%Y A135175 Cf. 2^p: A034785. 3^p: A057901. 2^5: A057902.
%K A135175 nonn,easy
%O A135175 1,1
%A A135175 _Omar E. Pol_, Nov 25 2007
%E A135175 More terms from _Vincenzo Librandi_, Dec 14 2010