This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135175 #20 Jun 08 2025 19:54:33 %S A135175 30,144,3336,80184,49003224,1222289256,763068462216,19074648065304, %T A135175 11921023089868344,186264583552936197096,4656613490748641378424, %U A135175 72759576592118027485247016,45474735125119406073899483976,1136868377544417255992242883544,710542735786689000089344282510584 %N A135175 a(n) = 5^p + 3^p - 2^p, where p = prime(n). %H A135175 Vincenzo Librandi, <a href="/A135175/b135175.txt">Table of n, a(n) for n = 1..200</a> %F A135175 a(n) = 5^p + 3^p - 2^p with p = A000040(n). %e A135175 a(4)=80184 because the 4th prime number is 7, 5^7=78125, 3^7=2187, 2^7=128 and 78125+2187-128=80184. %p A135175 a:= n-> (p-> 5^p+3^p-2^p)(ithprime(n)): %p A135175 seq(a(n), n=1..15); # _Alois P. Heinz_, Jun 08 2025 %t A135175 5^#+3^#-2^#&/@Prime[Range[20]] (* _Harvey P. Dale_, Apr 04 2011 *) %t A135175 Table[5^p + 3^p - 2^p, {p, Prime[Range[20]]}] (* _Vincenzo Librandi_, May 24 2014 *) %o A135175 (Magma) [5^p+3^p-2^p: p in PrimesUpTo(100)]; // _Vincenzo Librandi_, Dec 14 2010 %Y A135175 Cf. 2^p: A034785. 3^p: A057901. 2^5: A057902. %K A135175 nonn,easy %O A135175 1,1 %A A135175 _Omar E. Pol_, Nov 25 2007 %E A135175 More terms from _Vincenzo Librandi_, Dec 14 2010